Français

From Colored Glass Windows to Lasers: Nanogold Changes Light

129
2024-01-02 15:31:28
Voir la traduction

For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.

Now, researchers are preparing to push nano plasma technology, which was once used for art, towards emerging applications in photonics, sensing, and amplification.

Due to the ongoing challenge of manufacturing metal nanoparticles by precisely controlling the size, concentration, and dispersion of the glass itself, research on these unique plasma characteristics has slowed down. Early manufacturing techniques have been proven to be unreliable when applied to tellurite glass, which also possesses the ideal quality of embedded nanophotonic devices.

However, the implementation of many attractive applications of tellurites largely relies on the introduction and control of nanoscale metal features to propagate longitudinal light through plasma. Despite great interest, reliably combining customized metal nanostructures to activate plasma effects in tellurite glasses remains a persistent technical obstacle that hinders progress.

Tellurite glass has become a very promising medium for embedded photonic devices. It has unique properties, including wide infrared transparency covering half of the solar spectrum, high solubility allowing for strong luminescence of rare earths, and relatively low processing temperatures. Tellurite glass has moderate phonon energy and minimal interference with radiative transitions, thus achieving effective light emission and amplification. In addition, tellurite glass exhibits extraordinary anti crystallization stability.

These comprehensive characteristics make tellurite glass an ideal platform for developing active and passive photonic components, from amplifiers and color converters to planar waveguides and lasers. Specifically, its optical advantages provide the ability to guide light and utilize light transitions of rare earth elements in common material systems.

The latest research in collaboration between Australia and Germany has paved the way for the development and exploration of plasma enhanced optical effects in this special medium by developing a technology for systematically manufacturing gold nanoparticles with adjustable plasma response inside tellurite glass. Controlling these plasma entities at the nanoscale opens up possibilities for advancing photonic devices containing tellurite materials.

These material scientists have developed new technologies to systematically manufacture gold nanoparticles, providing adjustable plasma resonance bands in tellurite glass substrates. Their research provides a roadmap for consciously designing the characteristics of nanoparticles to advance photonics and sensing research.

By addressing the ongoing challenge of reliably manufacturing gold nanoparticles with adjustable plasma response, researchers have opened the door to exploring the plasma effect in tellurite glasses. Their technology has overcome previous obstacles to such research, allowing for conscious control of nanoparticle properties such as size and spacing.

Source: Laser Net

Recommandations associées
  • Leica Measurement System Development First Person Laser Scanner

    Leica Geosystems, a subsidiary of Hexagon, has developed Leica BLK2GO PULSE, its first person laser scanner, which combines LiDAR sensor technology with the original Leica BLK2GO shape. The technology will be released in early 2024.The scanner provides users with a fast, simple, and intuitive first person scanning method that can be controlled through a smartphone and provides real-time full color...

    2023-10-19
    Voir la traduction
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    Voir la traduction
  • Aalyria plans to establish a laser link mesh network to quickly transmit data on land, in the air, in the ocean, and in space

    Aalyria is establishing a laser link mesh network to quickly transmit data on land, in the air, in the ocean, and in space. The maritime part of the plan is about to be pushed forward.Recently, this DC based laser communication network company announced the signing of a memorandum of understanding with HICO Investment Group, which focuses on investing in shipping and logistics companies. According...

    2023-10-26
    Voir la traduction
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    Voir la traduction
  • 150 kW Ultra High Power Laser Sensor Released

    Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely ...

    2024-12-27
    Voir la traduction