Français

Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

125
2024-01-25 10:45:47
Voir la traduction

TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.

Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherlands and Europe in advancing technological sovereignty within a strong NATO, as it will achieve faster and safer broadband connectivity. This is a temporary result of the emerging Dutch industry's collaborative efforts dedicated to optical satellite communication.".

Almost all connections in daily life, such as Wi Fi, Bluetooth, or 5G, are based on radio frequency waves. Due to the increase in data consumption, this radio spectrum is slowly filling up, causing scarcity and interference. Laser satellite communication provides a solution as it can send data faster and safer through invisible laser signals. The radio frequency can reach speeds of several hundred megabits, and in some cases can reach several thousand megabits per second.

The speed of laser communication has increased by 100 to 1000 times. Even at lower speeds, laser communication links are interesting because the system is smaller, lighter, and more energy-efficient, which is crucial for space applications. It is also safer because it uses a very narrow optical laser beam instead of a wide radio signal. This makes eavesdropping more difficult and interference can be quickly detected.

The laser communication system SmallCAT was launched by SpaceX on a satellite operated by the Norwegian Space Agency in April 2023. Since then, TNO has been preparing to establish a connection between satellites flying in low Earth orbit and optical ground stations in The Hague and Tenerife Island. In such an experiment, the ground station first sends a signal to the satellite, and the laser communication system on the satellite must find the signal through its overpass. Then, it sends the laser back to the Earth that the ground station needs to capture. This is very challenging as the satellite flies at a speed of 28000 kilometers per hour at an altitude of 500 kilometers.

In several experiments, TNO successfully found two ground stations from space and sent back and recaptured the laser beam with extremely high accuracy. Once the link is established, data is transmitted from satellite instruments and received by the optical ground station in The Hague at a maximum data rate of 1 gigabit per second. The ground station of TNO in The Hague was jointly developed by TNO and Airbus Netherlands. This is the first time such a compact satellite instrument made in the Netherlands has achieved this. It indicates that the terminals on the satellite and the ground station are working, and they can also be found under real conditions.

Source: Laser Net

Recommandations associées
  • Multiple international laser companies continue to increase investment in the Chinese market

    In early spring of 2025, China's laser industry once again attracted the attention of global laser giants, ushering in a new wave of international investment boom.After several global laser giants accelerated their layout in China in 2024, in February 2025, Carl Zeiss from Germany and Bystronic from Switzerland, two global giants in the optical and laser fields, also announced significant expansio...

    02-15
    Voir la traduction
  • Breaking the limits of optical imaging by processing trillions of frames per second

    Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.The team located at the INRS É nergie Mat é riaux T é l é communications resea...

    2024-04-08
    Voir la traduction
  • German Jenoptik receives over 17 million euros in automation business orders

    Recently, Jenoptik, a leading German company in the field of optoelectronics, announced that the group successfully won multiple automation solution orders worth over 17 million euros in the second quarter of 2024.It is revealed that these orders originated from a first tier OEM supplier (unnamed) and were delivered by Prodomax, an automation expert under the group.As a member of the Yina Group (a...

    2024-06-18
    Voir la traduction
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the field of femtosecond laser air filamentation self focusing threshold research

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the repetition rate dependent femtosecond laser air filamentation self focusing threshold. The relevant research results were published in Optics Express under the title "Pulse repetition rate ...

    2024-08-02
    Voir la traduction
  • Sill Optics launches F-Theta lenses for photovoltaic applications

    The energy transformation has brought us global challenges. In this regard, renewable energy sources such as photovoltaic are crucial. The key to improving the efficiency of photovoltaic power generation is to improve the manufacturing process of solar cells. Laser material processing is used to weld individual batteries into modules, dope selective emitters, and remove very thin antireflective an...

    2023-11-22
    Voir la traduction