Français

Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

84
2024-01-31 13:58:14
Voir la traduction

Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.

Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semiconductor lasers, diamond Raman lasers, and fiber lasers. Among these three types, fiber lasers are an excellent choice for generating 1.2 μm band lasers due to their simple structure, good beam quality, and flexible operation.

Researchers led by Professor Pu Zhou from the National University of Defense Technology in China are interested in high-power fiber lasers in the 1.2μm band. Most of the current high-power fiber lasers are ytterbium-doped fiber lasers in the 1 μm band, and the maximum output of the 1.2 μm band is limited to 10 watts.

Their research, titled "High-Power Tunable Raman Fiber Laser in the 1.2 μm Band," was published in Frontiers in Optoelectronics.

Their idea is to use the stimulated Raman scattering effect in passive optical fibers to obtain high-power laser generation in the 1.2μm band. The stimulated Raman scattering effect is a third-order nonlinear effect that converts photons to longer wavelengths.

By exploiting the stimulated Raman scattering effect in phosphorus-doped optical fiber, the researchers converted the high-power ytterbium-doped fiber in the 1 μm band to the 1.2 μm band. A Raman signal with a power of 735.8 W was obtained at 1252.7 nm, which is the highest output power ever reported for a 1.2 μm band fiber laser.

Source: Laser Network


Recommandations associées