Français

Laser link between European Space Agency containers and space

106
2024-02-12 20:26:15
Voir la traduction

The latest expansion of the European Space Agency's laboratory is essentially portable: this European Space Agency's mobile optical ground station is housed in a standard container and can be transported throughout Europe as needed for laser based optical communication with satellites - including NASA's Psyche mission, in space millions of kilometers away.

The station has officially become a part of the Atomic Energy Agency's Optics and Optoelectronics Laboratory and will serve as a flexible testing platform for optical communication hardware and systems. ETOGS can also support other activities that require observing the sky with telescopes or pointing lasers at the sky, such as space debris monitoring or determining orbits through laser ranging.

ETOGS consists of a standard 6-meter long container that has been customized to accommodate telescopes with a diameter of 80 centimeters in the lifting platform and climate control operator area. Laser emitters, receivers, and other required equipment can be connected to this flexible structure to serve each specific activity. The station is hauled by trucks and can be deployed anywhere needed, powered by power accessories, diesel generators, or solar cell modules.

European Space Agency optoelectronic engineer Jorge Pires explained, "The creation of this station is indeed to meet the needs of the rapidly developing optical communication community for flexible testing platforms, rather than being deployable in representative ground environments. One of the most relevant issues in optical communication is to what extent the surrounding environment affects the quality of the link, such as background light in urban areas or atmospheric turbulence caused by weather.".

When it comes to receiving signals from quantum communication systems, this is most crucial because the amount of light involved is very low, and information is transmitted through a single photon. With this station, we can truly start answering these questions by operating at many different locations. By providing our partners with such ready-made testing platforms, we support hardware validation and iteration without the high development costs of using dedicated ground stations.

Optics and quantum technology are expected to completely change connections on a global scale. By using optical pulses with frequencies much higher than radio waves, optical communication can transmit more data at a given moment. Optical communication through optical fiber cable is the foundation of modern terrestrial Internet infrastructure, but the link with satellite still depends on low frequency and low bandwidth radio waves to a large extent.

By utilizing the quantum properties of light, systems such as quantum key distribution will help protect data to a level previously unimaginable; The physical properties of light particles protect the security of encryption key exchange, enabling message transmission to resist eavesdropping by malicious actors.

Jorge added, "The 80cm telescope at this station is the baseline size for quantum key distribution on a commercial scale, so we expect the station to be used to demonstrate and validate satellite based quantum communication.".

The first operational mission of this new European Space Agency asset will be to support the deep space optical communication demonstration of NASA's planned Psyche mission in 2025.

The European Space Agency is collaborating with a European consortium and the National Observatory of Athens to develop and deploy ETOGS at Kryoneri Observatory in Greece to accommodate multi beam ground laser emitters.

Source: Laser Net

Recommandations associées
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    Voir la traduction
  • The scientific research team of Beijing University of Technology opens up a new field of on-chip optics research

    Zhang Jun, an academician team of Beijing University of Technology, pioneered the on chip spectral multiplexing perception architecture, and independently developed the first 100 channel megapixel hyperspectral real-time imaging device in the world, creating the world's highest light energy utilization rate. On November 7, the team's relevant achievements were published in the journal Nature, and ...

    2024-11-08
    Voir la traduction
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    Voir la traduction
  • Japanese and Australian teams use lasers to search for space debris the size of peanuts

    It is reported that Japanese startup EX Fusion will soon reach an agreement with Australian space contractor Electric Optical Systems to conduct on-site testing of technology for tracking small space debris orbiting Earth.Image source: LeolabsEX Fusion, headquartered in Osaka, specializes in the laser business with the goal of achieving commercial laser fusion reactors. So far, nuclear fusion rese...

    2023-10-10
    Voir la traduction
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    Voir la traduction