Français

Researchers use non classical light to achieve multi photon electron emission

126
2024-05-20 15:23:40
Voir la traduction

Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission process is still poorly understood.

Researchers from Friedrich Alexander University (FAU) in Erlangen Nuremberg and the Max Planck Institute for Photoscience have recently begun exploring the interaction between light and matter through non classical light sources to fill this gap in the literature. Their paper published in the journal Nature Physics suggests that the photon statistics driving the light source are printed on the electron count statistics emitted by metal needle tips, and this observation may have interesting implications for the future development of optical devices.

The co-author and FAU researcher Jonas Heimerl of the paper told Phys.org, "The field of strong field physics has now been highly developed, as evidenced by the Nobel Prize in Physics in 2023." "This physical phenomenon is not limited to atoms, but also occurs on metal surfaces, such as metal needles. A similar and more diverse development is in the field of quantum optics. One aspect of this field is the use of non classical light statistics to generate light, such as bright compressed vacuum."

The main objective of Heimer and his collaborators' latest research is to understand how quantum light originating from non classical light sources interacts with matter. It is worth noting that so far, only classical light sources have been used to explore the interaction between quantum light and matter.

"Our neighbor Professor Maria Chekhova is a world leading expert in the field of bright compressed vacuum generation, a special form of non classical light," co author and FAU researcher Peter Hommelhoff told Phys Org. "Therefore, we collaborated with her and Ido Kaminer, a long-term partner at the Israel Institute of Technology, to study electron emission driven by non classical light."

Heimer, Homerhoff, and their research team at FAU collaborated closely with researcher Chekhova, who has extensive expertise in the field of quantum optics, to conduct experiments. Chekhova is known for her work in the generation of bright compressed vacuum, which requires the use of nonlinear optical processes to generate bright compressed vacuum (a type of non classical light).

"In our experiment, we used this non classical light source to trigger the photoelectric emission process of a metal needle tip with a size of only a few tens of nanometers," explained Heimer. "It can be regarded as Einstein's famous photoelectric effect, but modern light sources exhibit extreme intensity and fluctuations within each laser pulse."

For each laser pulse generated, researchers calculated the number of electrons in both classical and non classical light sources. Interestingly, they found that the number of electrons can be directly influenced by the driving light.

"Our findings may be of great interest to people, especially for electronic imaging applications such as biomolecular imaging," said Heimer
As is well known, biomolecules are highly susceptible to damage, and reducing the electron dose used for imaging these molecules can reduce the risk of such damage. Heimerl et al.'s paper. It is possible to modulate the number of electrons to meet the specific application requirements.
"However, before we can solve this problem, we must prove that we can also imprint another type of photon distribution on electrons, which is the photon distribution with reduced noise, but this may be difficult to achieve," said Homelhoff.

The discovery of this latest work may soon bring new opportunities for the study of strong field quantum optics. Meanwhile, they can serve as the foundation for new devices, including sensors and strong field optical devices that utilize the interaction between quantum light and electrons.

Source: Laser Net

Recommandations associées
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of intelligent optical microscopy imaging

    Recently, the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of intelligent optical microscopic imaging, and the research results were published online in the international high-level academic journal Opto Electronic Advances (IF: 15.3). The first author of the paper is Tian Xuan, a 2024 doctor...

    2024-09-09
    Voir la traduction
  • Continuation of the Term of President and CEO of Jena Germany

    Recently, the supervisory board of Jenoptik, a leading German laser technology company, announced an important decision: to extend and confirm the term of Dr. Stefan Traeger as Chairman of the Executive Board, with a new term of three years starting from July 1, 2025, and the contract validity period correspondingly extended to June 30, 2028. Dr. Stefan Traeger has been serving as the President ...

    2024-09-06
    Voir la traduction
  • AMCM 8 laser M 8K metal 3D printing equipment is about to be launched, equipped with 8 lasers

    In October 2023, Germany's AMCM (EOS, a global technology leader in industrial grade additive manufacturing) announced the upcoming launch of the M 8K metal 3D printing equipment. The device will be equipped with 8 lasers, with a construction volume of 800 x 800 x 1200 millimeters, nearly four times the size of AMCM's previously launched M 4K metal 3D printing device on the market.ArianeGroup's ho...

    2023-10-19
    Voir la traduction
  • Japanese and Australian teams use lasers to search for space debris the size of peanuts

    It is reported that Japanese startup EX Fusion will soon reach an agreement with Australian space contractor Electric Optical Systems to conduct on-site testing of technology for tracking small space debris orbiting Earth.Image source: LeolabsEX Fusion, headquartered in Osaka, specializes in the laser business with the goal of achieving commercial laser fusion reactors. So far, nuclear fusion rese...

    2023-10-10
    Voir la traduction
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    Voir la traduction