Français

China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

124
2024-06-28 10:55:03
Voir la traduction

Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoroscopy through Spin Orbit Coupling Regulation," were published in the German Journal of Applied Chemistry and selected as a hot topic article.

Integrating aggregation induced emission (AIE) effects into thermally delayed fluorescence (TADF) luminescent materials can provide enormous potential for the development of efficient organic light-emitting diodes (OLEDs). Although some progress has been made in the synthesis and fabrication of such materials and devices, there is still a lack of understanding of the corresponding theoretical mechanisms. In this work, the research team aims to regulate TADF by controlling the dynamic process of excited states through aggregation effects.

Research has found that aggregation not only enhances both immediate and delayed fluorescence, but also exerts binding effects on the conformational changes of excited states of molecules. This confinement not only enhances spin orbit coupling (SOC), but also reduces the energy difference (DEST) between singlet and triplet states. This work reveals the understanding of the basic mechanism of aggregation effect regulating TADF, providing guidance for the design of efficient photoluminescence materials.

The research team first analyzed the aggregation effect of the target material DCzBF2 on the regulation of TADF under N2 and O2 atmospheres. Research has found that both in N2 and O2 atmospheres, DCzBF2 exhibits a significant aggregation enhancing luminescence effect. Meanwhile, it was found that the relative ratio of immediate fluorescence and delayed fluorescence of DCzBF2 remained unchanged with the enhancement of aggregation effect in N2 atmosphere.

Using ultrafast spectroscopy research, it was found that the excited state conformational changes of molecules after aggregation were significantly suppressed. However, the ultrafast spectrum did not capture the TADF process in the liquid phase, but it did capture the corresponding process in the membrane phase. Quantitative calculations reveal that this is due to the suppression of the conformational rotation of molecules in the membrane phase, which enhances the SOC between singlet and triplet states involved in inter system crossing (ISC) processes and reduces the corresponding DEST, resulting in a strong triplet signal. Finally, the author studied the influence of different aggregation levels on the excited state relaxation process. The study found that an enhanced aggregation effect would slow down the excited state relaxation process, and there was also an excited state conformational change process at low aggregation levels, while at high aggregation levels, the excited state conformational change was completely suppressed.

This study demonstrates the feasibility of integrating the AIE effect in TADF materials and reveals the corresponding working mechanism. Research has found that with the enhancement of aggregation effect, immediate fluorescence and delayed fluorescence gradually increase, but aggregation effect does not change the ratio between singlet radiation rate and ISC rate. In addition, ultrafast spectroscopy and theoretical calculations in solutions and thin films further reveal that enhancing SOC and reducing DEST are the essential reasons for aggregation enhanced TADF.

Zhang Weite, Associate Researcher at the University of Science and Technology of China, is the first author of the paper; Professor Zhou Meng from the University of Science and Technology of China, Associate Researcher Kong Jie, and Professor Fu Hongbing from the Capital Normal University are the corresponding authors of this paper. This work has been supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China.

Source: University of Science and Technology of China

Recommandations associées
  • JMP: Small hole mode swing laser welding of nickel based high-temperature alloys - simulation, experiment, and process diagram

    IntroductionThe small hole mode swing laser welding has gained increasing recognition due to its ability to bridge gaps, refine microstructures, and enhance the mechanical properties of welds. However, the effects of amplitude, frequency, welding speed, laser beam power, and beam radius on heat flux distribution, melting mode, and three-dimensional temperature field have not been well understood. ...

    04-11
    Voir la traduction
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    Voir la traduction
  • Developing miniaturized laser technology: This company has secured $5 million in financing

    Recently, high-performance laser supplier Skylark Lasers announced that it has raised $5 million in investment to further advance its efforts in miniaturized laser technology.Skylark Lasers is established at the center of the Scottish Photonics Cluster, focusing on the design and production of compact diode pumped solid-state (C-DPSS) lasers with the purest spectral characteristics, providing high...

    2023-11-02
    Voir la traduction
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    Voir la traduction
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the field of femtosecond laser air filamentation self focusing threshold research

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the repetition rate dependent femtosecond laser air filamentation self focusing threshold. The relevant research results were published in Optics Express under the title "Pulse repetition rate ...

    2024-08-02
    Voir la traduction