Français

Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

209
2024-07-12 11:14:40
Voir la traduction

Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related research results, titled "Superconducting single photon detector with speed of 5 GHz and photon number resolution of 61", were published online in Photonics Research and were selected for editorial recommendation.

In recent years, superconducting nanowire single photon detectors have been widely used in quantum communication, optical quantum computing, and quantum mechanics principle verification due to their high efficiency, low dark count rate, and excellent time resolution.

The team has developed a highly efficient, ultra high speed, and high photon resolution superconducting detector integrated system. To ensure the portability and reliability of the detection system, the project has built a cooling integrated system based on a GM small refrigeration mechanism. The system supports 64 electrical channels and has a minimum operating temperature of 2.3 K. The detector chip integrates 64 superconducting nanowires on a distributed Bragg reflector, achieving both improved photon absorption and detection speed. After characterization, the yield of nanowire preparation was 61/64, and the system detection efficiency reached 90% at a wavelength of 1550 nm. The maximum counting rate was 5.2 GHz, and the counting rate was 1.7 GHz when the detection efficiency decreased by 3dB. The photon number resolution was 61. The performance indicators of this detection system are expected to support applications such as deep space laser communication, high-speed quantum communication, and basic quantum optical experiments.

The research work was supported by the Science and Technology Innovation 2030 Major Project, the National Natural Science Foundation of China, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the "Sailing Plan" of Shanghai.


Device structure (a), superconducting nanowires (b), device packaging (c), and refrigeration system (d)

Source: Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Sciences

Recommandations associées
  • Developing miniaturized laser technology: This company has secured $5 million in financing

    Recently, high-performance laser supplier Skylark Lasers announced that it has raised $5 million in investment to further advance its efforts in miniaturized laser technology.Skylark Lasers is established at the center of the Scottish Photonics Cluster, focusing on the design and production of compact diode pumped solid-state (C-DPSS) lasers with the purest spectral characteristics, providing high...

    2023-11-02
    Voir la traduction
  • Fulu and Longview begin design work on laser melting devices

    Longview Fusion Energy Systems and Fluor have taken another step towards commercialization of laser fusion power plants.According to the memorandum of understanding signed by the two companies, Fulu will design the factory for Longview Fusion Energy Systems. The two companies collaborated and signed a memorandum of understanding in 2023 to leverage Fulu's experience in developing and constructing ...

    2024-03-13
    Voir la traduction
  • The fourth CEO of this laser giant takes over strongly

    According to the latest news, on June 3, 2024, Coherent Corp. appointed Jim Anderson as CEO and he will also become a member of the board, replacing Vincent "Chuck" Mattera.Image source: CoherentAnderson (left) Mattera (right)Dr. Vincent "Chuck" D. Mattera, Jr. previously notified the Coherent Board of Directors on February 20, 2024, stating that he would resign from the position of CEO upon his ...

    2024-06-07
    Voir la traduction
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    Voir la traduction
  • This perovskite solar cell laser equipment company has received another round of financing

    Recently, Lecheng Intelligent Technology (Suzhou) Co., Ltd. (hereinafter referred to as "Lecheng Intelligent") completed a strategic financing round of tens of millions of yuan, which is exclusively invested by Dongfang Fenghai Capital. The financing funds will mainly be used for technology research and development, laboratory construction, and talent recruitment.This is the second round of financ...

    2023-10-10
    Voir la traduction