Français

Tsinghua University makes progress in the field of pre sensing optical computing

217
2024-08-05 14:03:15
Voir la traduction

In the era of the Internet of Things, visual image sensors, as key devices in the intelligent society, are embedded in various devices such as mobile communication terminals, smart wearable devices, automobiles, and industrial machines. With the continuous expansion of applications, higher requirements have been put forward for the system power consumption, response speed, safety performance, and other aspects of sensors. In the traditional "sensory transmission computing" link, the access speed of memory and communication bandwidth have gradually become the main bottlenecks limiting system power consumption and speed. Moving the computing unit closer to the sensing unit has gradually become a powerful way to solve this problem, as it enables the near sensing end of the system to have certain data processing capabilities. Compared to other proximity computing methods, pre sensing light computing has the advantages of high speed, high bandwidth, and low power consumption. However, currently the vast majority of optical neural networks require coherent lasers as light sources, with bulky and complex hardware systems that can only perform linear operations and lack interlayer nonlinear activation, which limits the application of pre sensing light computing in edge scenes.

Figure 1. Paradigm of Near Sensor Computing in Machine Vision Link

Professor Chen Hongwei's team from the Department of Electronic Engineering at Tsinghua University proposed a compact passive multilayer optical neural network (MONN) architecture, which consists of a passive mask and a quantum dot thin film, to complete multilayer optical calculations with interlayer nonlinear activation under incoherent light illumination. The optical length of this architecture is as short as 5 millimeters, which is 2 orders of magnitude smaller than existing lens based optical neural networks. Experimental results have shown that this multi-layer computing architecture outperforms linear single-layer computing in various visual tasks, and can transfer up to 95% of computations from the electrical domain to the optical domain. This architecture has the advantages of small size, low power consumption, and high practicality, and is expected to be deployed in mobile visual scenarios such as autonomous driving, intelligent manufacturing, and virtual reality in the future.

Figure 2. Multi layer pre sensing optical neural network architecture and interlayer nonlinear activation function measurement

Meanwhile, the absorption and emission spectra of CdSe quantum dots overlap within the wavelength range. By designing, the absorption and excitation spectra of the front and rear quantum dots can be aligned, enabling cascading and expansion of existing three-layer architectures to more layers. The MONN architecture can also be combined with other proximity computing paradigms to complete complex computing functions.

Recently, the related research results were published in Science Advances under the title "Pre sensor Computing with Compact Multi layer Optical Neural Network". The Department of Electronic Engineering at Tsinghua University is the first unit of the paper, Chen Hongwei is the corresponding author of the paper, and Huang Zheng, a doctoral student from the Department of Electronics in 2020, is the first author of the paper. The research has received support from the National Natural Science Foundation of China and the Beijing Municipal Science and Technology Commission.

Source: Opticsky

Recommandations associées
  • New laser technology can achieve more efficient facial recognition

    Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry P...

    2024-06-24
    Voir la traduction
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    Voir la traduction
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    Voir la traduction
  • An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

    The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.The specific technique...

    2024-11-13
    Voir la traduction
  • Coherent launches 12 kW sheet metal laser cutting processing head

    Recently, Coherent, an industrial laser technology giant, announced the launch of a new 2D laser cutting head - CUT12, which combines excellent performance, high versatility, and profound value for the global flat cutting market. Image source: CoherentThe CUT12 sheet metal laser cutting processing head is perfectly compatible with fiber lasers in the power range of 4 kW-12 kW (continuous wave),...

    2024-10-29
    Voir la traduction