Italiano

Researchers develop innovative quantum dot lasers for advanced frequency combs

108
2023-11-17 14:36:44
Vedi traduzione

Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for silicon photonic integrated circuits in data centers and various other applications.

The UCSB research team led by John Bowers designed the QD platform, which can manufacture devices with bandwidth comparable to the most advanced QD mode-locked lasers currently available. The AM and FM pulse widths generated by UCSB devices meet the latest standards for QD mode-locked lasers.

The significance of this development lies in the potential enhancement of optical frequency combs, which have been proven to have immeasurable value in remote sensing, spectroscopy, and optical communication. However, traditional amplitude modulation frequency combs pose challenges to dense wavelength division multiplexing systems due to their high instantaneous power, resulting in strong thermal nonlinearity. In order to effectively generate a wide and efficient optical frequency comb, precise engineering design of the group velocity dispersion of the waveguide is necessary.

UCSB researchers solved this challenge by utilizing collision pulse structures, which enable QD mode-locked lasers to have impressive fast repetition rates of 60 GHz. This helps to support DWDM systems while minimizing channel crosstalk during data transmission. In addition, the laser cavity is designed with a length of 1.35 mm and a width of 2.6 μ The laser cavity of m achieves a 3 dB optical bandwidth of up to 2.2 THz in the telecommunications O-band, with an impressive electro-optical insertion and removal efficiency of over 12%.

In order to generate FM combs, in addition to the group velocity dispersion of the waveguide, the nonlinear characteristics of the laser active region also play a crucial role. The QD mode-locked laser exhibits an astonishing -5 dB four-wave mixing efficiency, which helps generate FM combs efficiently and robustly. It is fascinating that the gain dynamics of quantum dot lasers determine the mechanism behind the formation of FM and AM combs. The formation of AM combs requires slow gain through low injection current, while FM combs rely on fast gain to generate significant Kerr nonlinearity and four-wave mixing.

In an equally eye-catching discovery, researchers have demonstrated the ability to effectively design Kerr nonlinearity in quantum dot lasers, expanding the FM comb bandwidth without the need for GVD engineering. By applying voltage to the saturable absorber portion of the laser, this method not only improves the performance of the FM comb, but also simplifies the manufacturing process. Compared with traditional quantum well diode lasers, quantum lasers have strong Kerr nonlinearity and four-wave mixing capabilities, making them more suitable for generating FM combs in the optical communication frequency band.

Compared with FM combs produced by other integrated optical frequency comb technologies, the FM combs produced by this new technology have better size, weight, power consumption, and cost characteristics, which demonstrate the strength of QD lasers. The wide range of characteristics of FM combs makes them very suitable for high-capacity optical communication systems, and their performance is superior to traditional AM combs.

Excitingly, the technology developed by UCSB researchers is also compatible with complementary metal oxide semiconductor technology, further highlighting its potential for practical implementation.

This groundbreaking study has been published in "Light: Science and Applications", a renowned scientific journal specializing in the field of optics.

Source: Laser Network

Raccomandazioni correlate
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    Vedi traduzione
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    Vedi traduzione
  • Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

    Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this bat...

    2023-09-25
    Vedi traduzione
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    Vedi traduzione
  • EO Technologies from South Korea enters the glass substrate processing market

    Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass sub...

    2024-06-18
    Vedi traduzione