Italiano

Due to research conducted by scientists from South Korea and the UK, the power of lasers will increase by one million times

125
2023-11-27 14:11:24
Vedi traduzione

Due to research conducted by scientists from South Korea and the UK, the power of lasers will be able to increase by one million times. The researchers plan to apply this improvement for scientific purposes.

The study was led by representatives of Strathclyde University and the Korea Institute UNIST and GIST. Behind the scenes footage of their work in the journal Nature Photonics. It has been proven that the key to success is to conduct simulations to demonstrate what changes are needed to significantly improve the capability of the device that emits laser pulses.

Based on their analysis, the research team concluded that the breakthrough moment will be to use the plasma density gradient to initiate the photon fusion process. If theoretical results are translated into actual situations, the increase in laser power compared to current results may exceed one million times.

What kind of results are we discussing? I just want to say that the power of the laser used so far - of course, the most powerful laser - is about 10 petawatts. This device is called Vulcan 20-20 and is expected to have a power of 20 petawatt. On the other hand, the upper atmosphere of Earth receives 173 watts of sunlight, of which about one-third of the radiation reaches the surface of our planet.

Powerful lasers can be used for various experiments, such as simulating the conditions inside stars.

As explained by experts, the use of terawatt or petawatt lasers makes it possible to create a new generation of laser plasma accelerators. A sufficiently powerful laser also provides answers to fundamental questions, such as the essence of matter and vacuum. These are just some of the issues covered by the research. Some even talk about conducting experiments at the so-called Schwinger limit, which assumes that light can be converted into matter.

All ideas related to the potential capabilities of this extremely powerful laser will be tested by research team members from the UK and South Korea. According to the representative of Strathclyde University, understanding the nature of matter and vacuum with intensity exceeding 1024 watts per square centimeter is one of the greatest challenges facing modern physics. Thanks to high-energy lasers, it is also possible to simulate the interior of stars and different parts of the solar system.

Source: Laser Net

Raccomandazioni correlate
  • Ortel launches advanced 1550nm laser to enhance LiDAR and optical sensing functions

    Ortel belongs to the Photonics Foundries group and has launched its latest innovative product - the 1786 1550 nm laser module, aimed at significantly improving optical sensing in various applications. This laser module is designed specifically for continuous wavelength operation and is a key component of systems that require coherent light sources for precise sensing in environments with fluctuati...

    2024-03-16
    Vedi traduzione
  • Four ways researchers harness the power of lasers to achieve manufacturing excellence

    The use of industrial lasers has become a viable option for many manufacturing processes. It enables workers to simplify steps, improve precision and benefit from the benefits associated with output. Decision makers will get the best results when they consider the specific possibilities of using lasers in manufacturing. Here are some options.Improved cleaning and texturing methodsMany man...

    2023-08-04
    Vedi traduzione
  • Photon automation expands through new laser application laboratories

    Photon Automation, Inc., headquartered in Greenfield, Indiana, has been committed to providing automated laser technology solutions since 2000. The company is pleased to announce the opening of its state-of-the-art laser application laboratory in Farmington Hills, Michigan. This 7400 square foot facility will be led by renowned laser physicist Dr. Najah George, who has over 35 years of extensive e...

    2023-09-01
    Vedi traduzione
  • Shanghai Institute of Optics and Fine Mechanics has made significant breakthroughs in the study of laser damage performance of mid infrared anti reflective coatings

    Recently, the Thin Film Optics Research and Development Center of the High Power Laser Component Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with researchers from Hunan University and Shanghai University of Technology to make new progress in the study of laser damage performance of mid infrared anti reflect...

    04-07
    Vedi traduzione
  • Laser gyroscopes measure small changes in daytime length on Earth

    Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolongin...

    2023-09-19
    Vedi traduzione