Italiano

Micro laser opens the door to chip size sensors

167
2024-03-13 10:40:09
Vedi traduzione

The new device is a frequency comb - a special type of laser that can generate multiple wavelengths of light, each with a fixed frequency interval. On the spectrogram, it looks a bit like the teeth of a comb. In approximately a quarter century since their first development, these "cursor rulers" have completely transformed various high-precision measurements from timing to molecular detection. In addition, each line of the comb can be isolated and has characteristics such as amplitude modulation to transmit data through optical fibers.

However, frequency combs typically require bulky, expensive, and power consuming equipment. This greatly limits their use in laboratory environments.

Now, scientists at Stanford University have adopted two different methods to create microchip level frequency combs. A strategy called optical parametric oscillation involves reflecting a laser beam within a crystal to organize the light itself into coherent and stable wave pulses. Another method is called phase modulation, which sends the laser into the cavity and applies radio frequency signals to control the phase of the light, generating frequency repetition for the comb. However, both strategies have drawbacks, such as low energy efficiency and limited ability to adjust optical parameters.

To overcome these challenges, scientists experimented with a material called thin film lithium niobate, which has many advantages over the industry standard material silicon. Two of these characteristics include how light of various wavelengths passes through it, and how it allows beams of different wavelengths to interact to produce new wavelengths.

This new material supports both optical parametric amplification and phase modulation in a single cavity. The resulting "micro comb" size is only 1 x 10 millimeters. Researchers say that such a compact size indicates that it can be used in mobile phones or smaller personal devices. They added that it can also be easily manufactured in traditional microchip factories.

"The most surprising aspect of this comb is how it performs in terms of bandwidth, spectrum, and efficiency," said Amir Safavi Noeini, Associate Professor of Applied Physics at Stanford University.

The new micro comb did not generate light pulses as expected by the researchers, but unexpectedly produced continuous output. Other combs waste power between pulses. Therefore, scientists can reduce the input power required by the device by about an order of magnitude.
The new device converts the light pumped into the cavity into a comb with an efficiency of over 93%. It can generate 200 comb lines with intervals of approximately 5.8 GHz at frequencies exceeding 1 THz. It has been proven that it is highly adjustable by simply adjusting the wireless signal applied to it. Safavi Noeini said that all of these features make it highly attractive for emerging ideas of chip level sensors that require detecting a wide range of spectra.

In addition, the device produces a flat comb, which means that the strength of comb lines with frequencies far from the center will not weaken. This flat feature helps to improve accuracy and makes micro combs available for a wider range of measurement applications.
Scientists have pointed out that the spacing between comb lines can reach 50 to 100 GHz, and the device may operate under blue to mid infrared light. This indicates that micro combs can be used for applications such as medical diagnosis, fiber optic telecommunications, LiDAR, and spectroscopy.

"We have recently started researching very lightweight, low-cost, and low-power greenhouse gas detection applications," said Safavi Noeini. Other fields such as biosensing are also very interesting.
Safavi Noeini said that in the future, scientists hope to improve the performance of devices and expand their bandwidth and operating wavelength range.
Scientists detailed their findings in the journal Nature on March 6th.

Source: Laser Net

Raccomandazioni correlate
  • Thales will provide laser payloads for Hellas Sat 5

    Hellas Sat, which holds a majority stake in Arabsat, has reached a memorandum of understanding with Thales Alenia Space to collaborate on the development of a luminous communication payload for an upcoming new mission that will be launched on the future Hellas Sat 5 telecommunications satellite, which will operate at 39 degrees east longitude.The partnership between Hellas Sat and Thales Alenia Sp...

    2024-01-30
    Vedi traduzione
  • 20W High Power Fiber Optic Frequency Comb with 10 to 19 Power Outside Ring Frequency Stability

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification. However, due to the un...

    2023-10-20
    Vedi traduzione
  • DIT and SK Hynix sign KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. According to DIT, the equipment supplied to SK Hynix this time is mainly a laser annealing kit. DIT was founded in 2005 and was listed on KOSDAQ in 2018. Its main focus is o...

    01-20
    Vedi traduzione
  • QBeam launches innovative window ablation laser system to achieve free space optical communication

    QBeam is a leader in developing breakthrough optical products and announced today that its handheld laser ablation equipment is fully launched for free space optical communication in indoor office locations. The qBeam window ablation laser allows for the installation of optical communication terminals indoors by treating windows that otherwise block the infrared beams of the terminals.Commercial b...

    2024-02-15
    Vedi traduzione
  • JMP: Small hole mode swing laser welding of nickel based high-temperature alloys - simulation, experiment, and process diagram

    IntroductionThe small hole mode swing laser welding has gained increasing recognition due to its ability to bridge gaps, refine microstructures, and enhance the mechanical properties of welds. However, the effects of amplitude, frequency, welding speed, laser beam power, and beam radius on heat flux distribution, melting mode, and three-dimensional temperature field have not been well understood. ...

    04-11
    Vedi traduzione