Italiano

Ultra fast plasma for all optical switches and pulse lasers

98
2024-03-26 14:19:24
Vedi traduzione

Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.

In addition to these applications, the ultrafast optical response of plasma is also a key characteristic that has been used to achieve optical signal switching across different spectral bands, which is crucial for advanced optical logic circuits and telecommunications systems.
Recently, optical switches have become an important component of the development of all optical computing and signal processing, among which these optical switch devices require enhanced response speed, modulation depth, and wide spectral tunability.

The latest developments in the manufacturing and characterization of plasma nanostructures have stimulated the search for sustained effects in their potential applications in the field of photonics. Professor Liu and his team focus on the role of plasma in photonics, introducing the latest developments in ultrafast plasma materials, with a focus on all optical switches.

By elaborating on the ultrafast process revealed by experimental and theoretical methods, the basic phenomena of plasma light matter interaction and plasma dynamics were discussed, and the use of ultrafast plasma for all optical switching and pulse laser generation was comprehensively explained, with a focus on device design and performance.

Here, they introduce the light matter interactions related to the ultrafast plasma response observed in different plasma materials and structures in the first part, and then explain the theoretical and experimental methods developed to study the ultrafast mechanisms in plasmons.

In the following chapters of this article, they discuss and summarize ultrafast plasma optical switching systems based on the classification of plasma metasurfaces such as precious metals, phase change hybrid materials, conductive oxides, and waveguides. These ultrafast plasma metasurfaces are further divided by spectral bands in the visible and near-infrared ranges. The last section discusses the use of plasma ultrafast optical switches to generate ultrafast pulse lasers.

Ultra fast plasma has been widely used in an increasing number of photonics applications. This review article will serve as a reference for researchers to explore new processes in photonics by combining plasma.
The research results are published in the journal Ultrafast Science.

Source: Laser Net

Raccomandazioni correlate
  • The visual LiDAR fusion calibration board improves the detection accuracy of the vehicle navigation system and does not need to be adjusted before sailing

    At present, the navigation system has become an important equipment on ships, aircraft, missiles, automobiles and other navigational vehicles. Laser Doppler radar has become an important development direction in the field of velocity measurement technology because of its high accuracy, good spatial resolution and fast dynamic response. The application of the three-beam Doppler Lidar in the...

    2023-08-23
    Vedi traduzione
  • 10.30 Shenzhen Munich South China Laser Exhibition awaits you

    The Munich South China Laser Exhibition is about to open!As a member exhibition of the South China International Intelligent Manufacturing, Advanced Electronics, and Laser Technology Expo (referred to as "LEAP Expo"), it will be held from October 30 to November 1, 2023 at the Shenzhen International Convention and Exhibition Center (Bao'an New Hall) in conjunction with the Munich South China Elect...

    2023-10-26
    Vedi traduzione
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    Vedi traduzione
  • Innovative laser technology: a novel quantum cavity model for superradiance emission

    Quantum optics is a complex field where theoretical and experimental physicists collaborate to achieve breakthroughs in explaining subatomic level phenomena.Recently, Farokh Mivehvar from the University of Innsbruck used the most comprehensive model in quantum optics, the Dicke model, to study the interaction between two groups of atoms in a quantized field. This new study makes it possible to obs...

    2024-03-16
    Vedi traduzione
  • Shanghai Optics and Machinery Institute has made new progress in laser welding of new high-temperature nickel based alloys

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Machinery has made new progress in laser welding of new structural materials for high-temperature molten salts. The research team used a high-power laser for the first time to achieve defect free welding of nick...

    2023-09-01
    Vedi traduzione