Italiano

Tianjin University's Photoacoustic Remote Sensing Microscopy Technology Breakthrough New Heights

224
2024-04-16 17:53:33
Vedi traduzione

Recently, Professor Tian Zhen's team from Tianjin University has made a breakthrough in the field of photoacoustic remote sensing microscopy technology and successfully developed a new type of non-destructive testing method. This technology uses Kaplin high-power femtosecond laser as the key light source, further optimizing the solution to the internal flaw detection limitations of inverted chips, improving the overall detection performance of the system, and opening a new chapter for the development of non-destructive testing technology.

Leading the way and promoting a leap in non-destructive testing technology
Photoacoustic remote sensing microscopy technology, as a promising detection microscopy method proposed in recent years, can achieve a large field of view and fast non-destructive testing imaging inside inverted chip models. It is of great significance for the detection of high-value analytes such as chips and biological tissues.

Researchers introduce that traditional microscopy techniques often face the dilemma of difficult to balance imaging depth and resolution. Either the imaging depth is not high, such as OCT; Either the resolution is not high and there is contact. Photoacoustic remote sensing microscopy technology can significantly solve these pain points, achieving characteristics such as large imaging depth, high resolution, and non-contact, and has high value in medical applications.

In the research, Tianjin University used a Kaiprin 20 watt infrared femtosecond laser as the femtosecond laser source, providing stable and high-quality laser pulses for photoacoustic remote sensing microscopes. The output center wavelength of the laser is 1030 nm, the repetition rate is adjustable from 0.1 to 1 MHz, and the pulse width is adjustable from 300 fs to 10 ps (the pulse width used in the experiment is about 1.2 ps).

After collimation, beam expansion, and combined with a 1310 nm continuous probe light beam emitted by a superluminescent diode, it finally enters the optomechanical scanning system, which is a large field of view fast scanning imaging system composed of a galvanometer scanning mirror system, an objective lens, and a three-dimensional electric displacement stage. During the imaging process, the inverted chip is in an inverted state, meaning that the internal metal structure is not visible relative to the bright field microscope.

The photoacoustic remote sensing microscope system can perform large field optical mechanical joint scanning imaging on inverted chip models. Its working principle is to first obtain an independent small field of view through "mosaic scanning", then move the chip sample to the next adjacent position through an electric displacement table, and finally concatenate these small range images to form a complete large field of view image.. The experimental results fully demonstrate that photoacoustic remote sensing microscopy has the potential for non-destructive testing of chips in industrial environments.

The successful application of this technology will significantly improve the overall detection performance of the system and is expected to become an important tool for non-destructive testing in the medical field, providing strong support for early detection and precise treatment of diseases.

Femtosecond laser creates a powerful engine for scientific research and innovation
Keplen's high-power femtosecond laser provides strong support for scientific research fields such as photoacoustic remote sensing microscopy technology due to its excellent stability, adjustable pulse width, and good beam quality.

This 20 watt infrared femtosecond laser, thanks to its all fiber structure and industrial integration design, demonstrates excellent stability and processing capabilities. Its characteristics include long-term continuous processing stability, adjustable pulse width, repetition rate, and adjustable pulse energy, which control the pulse time domain within 300 femtoseconds, effectively reducing the thermal impact on material processing and achieving true "cold" processing.

This laser is widely favored in the field of organic thin film and flexible material processing, and has also attracted attention in the domestic ultrafast laser market. It not only handles flexible and brittle materials such as OLED, glass, ceramics, sapphire, semiconductor materials, and alloy metals, but also plays an important role in micro/nano processing, precision marking, and other precision machining applications.

Writing on "hair strands", ultrafast lasers can showcase their skills. The head of Keplen's ultrafast business unit stated that ultrafast lasers have enormous development potential, not only continuously expanding human cognitive boundaries in cutting-edge fields, but also continuously overcoming key technological challenges in application fields. Looking ahead to the future, Keplen will uphold a long-term philosophy, deeply cultivate the fields of femtosecond, picosecond, and nanosecond lasers, provide more innovative solutions for scientific research and industrial applications, and promote the progress and development of technology.

Source: Kaplin

Raccomandazioni correlate
  • Optical Capture of Optical Nanoparticles: Fundamentals and Applications

    A new article published in Optoelectronic Science reviews the basic principles and applications of optical capture of optical nanoparticles. Optical nanoparticles are one of the key elements in photonics. They can not only perform optical imaging on various systems, but also serve as highly sensitive remote sensors.Recently, the success of optical tweezers in separating and manipulating individual...

    2023-11-25
    Vedi traduzione
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    Vedi traduzione
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    Vedi traduzione
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    Vedi traduzione
  • Researchers successfully 3D printed polymer based robotic arms through laser scanning

    Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.Inkbit, a derivative compa...

    2023-11-16
    Vedi traduzione