Italiano

Heavyweight Natuer: New progress in the efficiency of perovskite battery modules! Professor Zhang Xiaohong from Suzhou University, an alliance unit, issued a document

103
2024-04-19 16:05:39
Vedi traduzione

Recently, Professor Zhang Xiaohong and Professor Peng Jun from the Functional Nanomaterials and Soft Materials Research Institute (FUNSOM) of Suzhou University, along with Professor Mohammad Khaja Nazeeruddin, Professor Paul J. Dyson, Professor Zhaofu Fei, and Professor Ding Yong from North China Electric Power University, collaborated to publish their research findings on Dopant additive synergy enhancement perovskite solar modules in the journal Nature. Peng Jun is the co first author of the paper, and Zhang Xiaohong is the co corresponding author of the paper.

Perovskite solar cells have become the most advanced new thin film photovoltaic technology due to their rapid improvement in efficiency and stability. However, compared with small laboratory scale batteries, the main bottlenecks hindering the commercialization of large-area perovskite battery modules are low efficiency, poor stability, and low repeatability.

In response to the key scientific issues mentioned above, Zhang Xiaohong, Peng Jun, and their collaborators recently adopted a strategy of using methylammonium chloride (MACl) as a dopant and 1,3-bis (cyanomethyl) imidazole chloride ([Bcmim] Cl) as a Lewis alkaline ionic liquid additive to significantly inhibit the degradation of perovskite precursor solutions, reduce MACl aggregation, and thus prepare high-quality perovskite films with oriented growth and excellent crystallization. A steady-state efficiency of 22.97% was achieved on a perovskite battery module with an aperture area of approximately 27.22cm2, successfully breaking the world record for steady-state efficiency of perovskite modules (National Photovoltaic Industry Metrology and Testing Center, NPVM certification). In addition, under working conditions of 65 degrees Celsius, after 1000 consecutive hours of light aging, the efficiency of the perovskite battery module obtained from the test still maintains 87.19% of the initial value, which fully demonstrates its excellent photothermal stability.

More importantly, this work reveals the intrinsic mechanism of the synergistic effect between dopants and additives, namely proton exchange and multi-point interactions, providing a practical and feasible solution for improving the performance of large-area perovskite battery modules.

Title of the article: Dopant-additive synergism enhances perovskite solar modules


Article website: https://www.nature.com/articles/s41586-024-07228-z

Ding, B., Ding, Y., Peng, J. et al. Dopant-additive synergism enhances perovskite solar modules. Nature 628, 299–305 (2024). https://doi.org/10.1038/s41586-024-07228-z

Source: Yangtze River Delta Laser

Raccomandazioni correlate
  • Dublin City University has successfully tested the laser components of the next generation space navigation atomic clock

    The team collaborated with Eblana Photonics and Enlightra to showcase for the first time a new caliber laser, which will enable atomic clocks to be more efficient and compact for future satellite missions.This innovation addresses the key needs identified by the European Space Agency, which is the leading organization for the next generation of space navigation systems. This work was recently publ...

    2023-09-22
    Vedi traduzione
  • Enlightra and DESY Hamburg developed an improved and scalable comb laser

    Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard...

    2024-01-26
    Vedi traduzione
  • Researchers at the Massachusetts Institute of Technology have designed a new type of quantum light source using lead salt perovskite nanoparticles

    Most traditional quantum computing uses the spin of supercooled atoms or individual electrons as quantum bits, which form the foundation of such devices. By comparison, if light is used to replace physical entities as basic quantum bits, ordinary lenses and optical detectors can replace expensive devices to control the data input and output of quantum bits.Based on this, chemistry professors Moung...

    2023-10-09
    Vedi traduzione
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    Vedi traduzione
  • Han's Laser New Product Debuts at 2025 Munich Shanghai Light Expo

    New product launch of "Blue Hurricane" red blue integrated laser1. Ultra high power: The "red blue integrated" laser, with optimized optical path design and heat dissipation system, can stably output power exceeding industry standards, meeting high demand application scenarios.2. Dual high brightness: Integrating advanced wavelength modulation technology and materials science, both red and blue l...

    03-07
    Vedi traduzione