Italiano

Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

138
2024-05-21 14:05:14
Vedi traduzione

According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.
ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.

They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Aperture (NA) EUV devices, indicating that Intel has obtained all 5 devices planned to be produced in 2024 at a cost of approximately $370 million per unit, highlighting Intel's significant investment in advanced manufacturing technology.

Meanwhile, Intel's competitors such as Samsung and SK Hynix will have to wait until the second half of 2025 to acquire such devices. They also stated that the American chip manufacturer purchased these devices in advance when announcing the resumption of chip foundry or chip production business.

Many people may be curious about when TSMC will join this trend. So far, the company has stated that it has not seen the benefits of high numerical aperture (NA) configurations for customers, so it will continue to use extremely ultraviolet (EUV) lithography equipment for the foreseeable future. However, for TSMC, this move may not be bad because it has high-income customers. Technology giants including Nvidia, AMD, Apple, and even Intel are ready and willing to pay any price for Intel's most advanced products, so we must wait for a few years to see if Intel's gamble will pay off.
ASML's high numerical aperture (NA) extreme ultraviolet EUV device is an essential equipment for 2nm process node chips, with a unit price exceeding 500 billion Korean won.

Numerical aperture (NA) is a measure of the ability to collect and focus light. The higher the value, the better the light collection effect, and the NA of high NA EUV devices increases from 0.33 to 0.55. This basically means that the device can draw finer circuit patterns. In recent years, high numerical aperture EUV technology has made significant progress in resolution and transistor size by changing the design of optical devices used to project patterns onto wafers.

Intel is adopting high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment faster than its competitors to win customers. The company entered the contract manufacturing market again in 2021, but the business incurred a loss of $7 billion last year.
Intel obtained its first high NA EUV device from ASML in January this year and completed assembly in Oregon in mid April. This TWINSCAN EXE: 5000 device is the first commercial lithography system of this type, and Intel plans to use it to reduce the total number of outsourced wafers, thereby enhancing the profitability of its foundry business.

The company hopes this will help its struggling OEM business turn the tide, having previously reported an operating loss of $7 billion in 2023.

Although the device is expected to be fully operational by 2025, Intel has stated that it will use it to produce 14A process chips and is expected to achieve full operation around 2026. This demonstrates Intel's long-term planning and firm determination in advanced manufacturing technology. Considering the schedule involved, it remains to be seen how Intel will handle the 5 high NA devices as it will not use them throughout the entire chip production process.

ASML is the world's only supplier of extreme ultraviolet lithography machines required to manufacture the most advanced 3nm and 5nm chips. ASML is headquartered in the suburbs of Eindhoven, Netherlands and is the most valuable technology company in Europe with a market value of 338.7 billion euros (363.2 billion US dollars).

The working principle of the company's high NA EUV machine is to use a laser to impact and heat tin droplets up to approximately 220000 degrees Celsius (396032 degrees Fahrenheit), generating 13.5nm wavelength light, which is not naturally generated on Earth. Then, these lights are reflected by a mask containing a circuit pattern template and passed through an optical system composed of the most precise mirrors ever created.
In April 2024, Peter Wennink, who had been serving as the CEO of ASML for a long time, announced his retirement, replaced by former Chief Business Officer Christophe Fouquet.

As the only global supplier of extreme ultraviolet lithography machines required for manufacturing the most advanced chips, ASML's high NA EUV equipment operates on complex physical processes. By colliding tin droplets heated to extremely high temperatures with lasers, specific wavelengths of light are generated, which are then reflected and focused onto the wafer through a precise optical system, achieving high-precision pattern etching.
With the continuous progress of technology and the growth of market demand, advanced manufacturing technology has become the core competitiveness in the field of chip manufacturing. Intel's purchase of high NA EUV devices will further enhance its competitiveness in the foundry market and help drive innovative development in the entire chip industry.

Source: OFweek

Raccomandazioni correlate
  • Overview of Inconel 939 Alloy Parts Developed by Additive Manufacturing Process

    The related paper was published in Heliyon under the title "A systematic review of Inconel 939 alloy parts development via additive manufacturing process".IN939 is a modern nickel based high-temperature alloy that can work continuously at high temperatures due to its excellent fatigue resistance, creep resistance, and corrosion resistance. The unique performance of IN939 is related to the composit...

    2024-12-10
    Vedi traduzione
  • LightSolver announces the launch of the LPU100 laser computing system

    LightSolver, a laser based computing company, announced that it is a breakthrough in quantum inspired high-performance computing.Its LPU100 system utilizes the power of 100 lasers to solve optimization problems, challenging the processing time of quantum and supercomputers. The laser array of LPU100 represents 100 continuous variables and can solve up to 120100 combinations of problems, enabling ...

    2024-03-22
    Vedi traduzione
  • Rapid and convenient preparation of small-sized metal nanoparticles using microchip lasers

    Liquid pulse laser ablation is a reliable and versatile technique for producing metal nanoparticles in solution. Its advantages include no reducing agent, simple operation, high purity, no need for purification steps, and environmental processing conditions, making it the preferred method for traditional metal NP preparation.The widespread adoption of PLAL in scientific and industrial research has...

    2024-01-30
    Vedi traduzione
  • Laser Photonics Corporation sets high growth strategy for 2025

    Recently, laser cleaning equipment manufacturer Laser Photonics Corporation (LPC) announced its ambitious 2025 growth strategy, emphasizing innovation, strategic investment, and market expansion. LPC Executive Vice President John Armstrong stated:With a solid foundation laid in 2024, we will enter 2025 with clear momentum and a firm focus on growth. The progress we made last year - strengthening...

    01-20
    Vedi traduzione
  • Making Infrared Light Visible: New Equipment Utilizes 2D Materials to Convert Infrared Light

    Infrared imaging and sensing technology can be used in various fields, from astronomy to chemistry. For example, when infrared light passes through a gas, sensing changes in light can help scientists identify specific properties of the gas. The use of visible light may not always achieve this sensing.However, existing infrared sensors are bulky and inefficient. In addition, due to the use of infra...

    2024-06-24
    Vedi traduzione