Italiano

Meltio launches a new blue laser 3D printer M600

97
2024-07-06 10:25:58
Vedi traduzione

Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications.

 



Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory costs, and fragile supply chains. For this purpose, the Meltio M600 aims to improve productivity, reduce costs, and achieve internal component production, thereby making the manufacturing process more robust.

Lukas Hoppe, the R&D director of Meltio, stated at a press conference that the design task of the new Meltio M600 is to envision a perfect 3D printer suitable for machining workshops.

3D printing has enormous potential to reduce delivery time and manufacturing dependence through internal printing of parts, reduce warehouse inventory, as raw materials can be converted into final parts on demand, and reduce costs by only using materials where needed

Blue light environmental protection new trend, more cost-effective
Unlike traditional 3D printing technology, Meltio's M600 uses wire laser metal deposition. This process is similar to laser welding, allowing machines to easily print simple or complex metal structures.

Hope pointed out, "Our goal is to strike a balance between machine size, cost, and productivity for the Meltio M600, while not compromising quality, reliability, and ease of use."

The M600 uses wire as the material, which is safer, more cost-effective, and reduces the risk of pollution. The wire is bombarded by high-power laser in the print head, achieving precise and controllable metal deposition.

However, the difference between M600 and Meltio's other metal 3D printers is that it uses cutting-edge blue light laser technology. This innovation not only improves printing speed but also reduces required energy, making it particularly suitable for materials that challenge infrared lasers, such as copper and aluminum alloys.

The use of blue light laser technology and wire not only improves operational efficiency, but also reduces the carbon footprint of the production process, meeting the growing demand for sustainable manufacturing.

Leading the Revolution of Metal 3D Printing
The design features of M600 include a spacious (300x400x600mm) fully inert workspace that can handle various materials such as titanium, copper, aluminum alloys, stainless steel, tool steel, nickel, invar alloys, and Inconel.

This 3D printer also features a built-in workpiece fixing solution and a three-axis touch probe, adding versatility.

The design of M600 prioritizes autonomous operation, reducing operator intervention and meeting the demand for reliable and continuous production in industrial manufacturing.

Meltio's M600 is an important step in making metal additive manufacturing a viable and competitive option for various industrial applications.
It improves material processing, production efficiency, and operational integration, opening up opportunities for the wider adoption of 3D printing technology in industries such as automotive, aerospace, oil and gas, mining, and defense.

Source: OFweek

Raccomandazioni correlate
  • Innovative nanoparticle analysis: achieving breakthrough 3D imaging using X-ray lasers

    The latest progress in X-ray laser technology has opened up a new era of nanoscale exploration, bringing unprecedented opportunities for materials science and nanotechnology. Researchers have developed a novel imaging technique that can directly visualize separated nanosamples in free flight, capturing their complex structures with stunning details. This breakthrough method relies on single cohere...

    2024-03-05
    Vedi traduzione
  • Probe organization of photoacoustic devices using low-cost laser diodes

    Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.By providing a cost-ef...

    2024-03-06
    Vedi traduzione
  • New Progress in Research on Three Lattice Photonic Crystal Surface Emission Lasers at Changchun Institute of Optics and Mechanics

    Recently, Tong Cunzhu, the research team of the Chinese President of Science, Chunguang Institute of Mechanical Mechanics, made important progress in the research field of photonic crystal surface emitting lasers (PCSEL), proposed a three lattice structure and achieved a low threshold 1550nm PCSEL. Relevant achievements were published in Light: Science and Application vol.13, 442024, and the famou...

    2024-03-15
    Vedi traduzione
  • Mitsubishi Electric has launched a light source module for high-capacity laser optical communication in outer space

    On August 22nd, Mitsubishi Electric Corporation, a multinational electronics and electrical equipment manufacturing company, announced that it had successfully demonstrated laser optical frequency control using a new light source module, which is a key component of a high-capacity laser optical communication network to be deployed in outer space.It is reported that this module can generate 1.5 &mu...

    2023-08-24
    Vedi traduzione
  • Expert discussion at IEC TC110 conference: Laser display is expected to surpass traditional display solutions

    Recently, the International Electrotechnical Commission Electronic Display Technology Committee (IEC TC110) International Standards Conference was held in Qingdao, attracting more than 120 experts, scholars, and technical representatives from around the world, including Japan, South Korea, and the United States. At the IEC TC110 conference, laser display technology has won wide recognition from in...

    02-25
    Vedi traduzione