Italiano

Samsung and SK Hynix Explore Laser Debonding Technology

128
2024-07-16 14:45:46
Vedi traduzione

According to South Korean media etnews, Samsung Electronics and SK Hynix have started the process technology conversion of high bandwidth memory (HBM) wafers, with the introduction of new technologies to prevent wafer warping as the core, which is considered to be aimed at the next generation HBM. It is expected that with the process transformation, the material and equipment supply chain will also undergo changes.

It is reported that Samsung Electronics and SK Hynix are currently working with partners to develop a laser method to replace HBM with wafer exfoliation (debonding) technology.

Wafer debonding is the process of separating a thinned wafer from a temporary carrier during the manufacturing process. In the semiconductor manufacturing process, the main wafer and the carrier wafer are bonded together with adhesive and then peeled off with a blade, hence it is called mechanical debonding.

As the number of layers in HBM increases, such as 12 or 16 layers, the wafer becomes thinner, and the use of blade separation methods faces limits. When the wafer thickness is less than 30 microns, there is a concern about damaging the wafer, so the process steps of etching, polishing, wiring, etc. are increased. At the same time, new adhesives that are suitable for ultra-high temperature environments need to be used. This is also the reason why the two companies chose to use lasers instead of traditional mechanical methods.

Industry insiders familiar with the issue explained that "in order to cope with extreme process environments, stronger adhesives are needed, which cannot be separated by mechanical means. Therefore, the new technology of laser has been introduced," and stated that "this is an attempt to stably separate the main wafer and the carrier wafer.

Samsung Electronics and SK Hynix are considering using various methods such as extreme ultraviolet (EUV) laser and ultraviolet (UV) laser.
Laser debonding is believed to be introduced first into the 16 layer HBM4. HBM4 uses a system semiconductor based "base chip" at the bottom of stacked DRAM memory, requiring finer processes and thinner wafers, so laser technology is considered appropriate.

When using lasers, changes in the supply chain of related materials and equipment are inevitable. The existing mechanical methods are dominated by Tokyo Electric of Japan and S Ü SS MicroTec of Germany, which occupy the top two positions in the market. Laser technology may attract more equipment companies and is expected to engage in fierce competition.

The wafer debonding adhesive is mainly supplied by 3M in the United States, Shin Etsu Chemical in Japan, Nissan Chemical, TOK, and others. It is reported that these companies are also developing new adhesive materials that can be used for laser methods instead of existing mechanical methods.

Source: Yangtze River Delta Laser Alliance

Raccomandazioni correlate
  • New Source Technology will participate in the 2024 Western Optoelectronics Show in the United States

    Laser and electro-optic product manufacturer and supplier Xinyuan Technology announced today that it plans to participate in the 2024 Western Optoelectronics Show in San Francisco from January 30th to February 1st.As a top event in the photonics industry, the Western Optoelectronics Show in the United States will return in 2024 to host another groundbreaking exhibition. This annual event att...

    2023-11-11
    Vedi traduzione
  • The most advanced gas sensing laser technology will be exhibited at the upcoming CEM 2023 exhibition in Barcelona

    Nanoplus Nanosystems and Technologies GmbH is an ISO 9001:14001 certified supplier and one of the world's most famous laser manufacturers for gas sensing applications. The cornerstone of nanoplus's success is its unique patented method of manufacturing DFB laser sources. Nanoplus celebrates its 25th anniversary this year and separated from the University of Vilzburg in 1998.Among the outstanding i...

    2023-09-14
    Vedi traduzione
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    Vedi traduzione
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    Vedi traduzione
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    Vedi traduzione