Italiano

The semiconductor laser market is expected to reach $5.3 billion by 2029

292
2024-12-03 13:57:36
Vedi traduzione

Nowadays, laser technology is widely used in various traditional and emerging fields, including optical communication, material processing, consumer equipment, automotive sensing and lighting, display technology, medical applications for treatment and diagnosis, as well as aerospace and defense.

Especially in the semiconductor laser market, it is expected to grow from $3.1 billion in 2023 to $5.2 billion in 2029, with a compound annual growth rate (CAGR) of 9% during this period. This growth will be driven by rapid technological advancements, increasing demand from multiple industries, and the push to achieve higher performance at lower costs. The main trends shaping the semiconductor laser market include the expansion of laser applications, the shift towards compactness, energy efficiency, and solutions, as well as the integration of various technology platforms such as SOI, SiN, InP, and TFLN. At the same time, geopolitical factors and supply chain challenges are prompting manufacturers to adopt more flexible production strategies. Overall, driven by innovation in both mature and emerging markets, the semiconductor laser industry is expected to achieve significant growth.

 


The semiconductor (SC) laser industry constitutes the core of the photonic ecosystem. Although SC lasers have been widely adopted in communication and sensing applications, this photon technology is a challenging market for newcomers. SC laser manufacturers operate at different integration levels based on their knowledge and foundry capabilities, and must strategically choose segmented markets or applications based on their internal capabilities. The wide range of applications requires unique laser system specifications, which can affect the design of SC laser chips. In addition, there is fierce competition among direct diodes, fiber lasers, DPSSL, OPSL, and gas lasers in terms of technological level.

Therefore, the SC laser industry is highly dispersed and diversified, and each application requires a specific supply/value chain. Manufacturers must adopt different strategies to enter different segmented markets. The leading SC laser manufacturer implements vertical integration, managing all steps from epitaxial and front-end (FEOL) processing to back-end (BEOL) and module assembly or laser subsystem construction. Some even specialize in producing laser machinery for material processing applications.

VCSEL technology is rapidly developing, and companies such as Lumentum, Coherent, and Trumpf have improved power density through NIR multi junction design, increasing from 5-6 junctions to 8 by 2024. These lasers were initially used in automobiles and are now expanding into consumer and industrial markets. Despite technological challenges, efforts to extend GaAs VCSEL from NIR to SWIR (including wafer fusion technology) still show promise, while GaN based visible light VCSEL is still in the research and development stage due to performance limitations and low market demand. In the field of optical communication, VCSEL is developing from 100G/lane to 200G/lane, and the grand goal for the future is 400G/lane.

Similarly, EEL technologies such as DML, EML, and CW-DFB are expected to achieve 200G/lane by the end of 2024. FP and QCL lasers continue to dominate the industrial, medical, and automotive fields, with the goal of achieving a power output of 20W by 2026 to help reduce system costs. In the field of automotive LiDAR, EEL faces competition from advanced VCSEL and emerging FMCW LiDAR technologies. Driven by artificial intelligence driven optical communication, it is expected that by 2029, the demand for photonics integrated circuits (PIC) from SC lasers will reach a market share of 5%. However, due to continuous advancements in power, efficiency, and wavelength diversity, discrete lasers still remain competitive.

Source: Yangtze River Delta Laser Alliance

Raccomandazioni correlate
  • Creativity Falcon 2 laser cutting machine will be launched in Germany equipped with a new 60W laser head

    Starting from June 20th, The Creativity Falcon 2 laser cutting machine will also be launched in Germany, equipped with a new 60W laser head. With this ability, fully encapsulated equipment can now also be carved into steel. High power is achieved through twelve 5-watt laser diodes, whose beams are combined with each other. This will make it possible to cut 22mm thick lime wood and 30mm thick or...

    2024-05-29
    Vedi traduzione
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    Vedi traduzione
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    Vedi traduzione
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    Vedi traduzione
  • New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

    Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introdu...

    2024-03-15
    Vedi traduzione