Italiano

Lithuanian and Japanese researchers develop silver nanolaser

266
2024-12-24 14:21:41
Vedi traduzione

Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.

Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research team is confident in this.

This nanolaser has broad potential applications in early medical diagnosis, data communication, and security technology. At the same time, it is also expected to become an important tool for studying the interaction between light and matter. The amplification and generation of laser light vary depending on the application, determining the color of radiation and the quality of the laser beam.

According to Juod NAS from KTU, a co-author of the invention, "Nanolasers use structures that are one million times smaller than millimeters to generate and amplify light, and their laser radiation is generated in extremely small volumes of materials.

Although research and development of nanolasers have been ongoing for some time, the versions developed by KTU and its Japanese partners have unique manufacturing processes. They used silver nanocubes arranged neatly on the surface and filled with optically active materials to create the mechanisms required for amplifying light and generating laser effects.

As extremely small single crystal silver particles, silver nanocubes possess excellent optical properties and are the core components of our nanolaser, "said Juod NAS, a researcher at KTU Institute of Materials Science.

These nanocubes were synthesized using a unique process invented by KTU partners in Japan, ensuring their precise shape and quality. Subsequently, using nanoparticle self-assembly technology, these cubes were arranged into a two-dimensional structure. During this process, particles naturally arrange from the liquid medium onto the pre designed template.

When the template parameters match the optical properties of the nanocubes, a unique phenomenon called surface lattice resonance occurs, effectively generating light in the optically active medium.

Unlike traditional lasers that generate this phenomenon using mirrors, the KTU team's nanolaser utilizes a surface with nanoparticles. When silver nanocubes are arranged in a periodic pattern, light is captured by them. This process is similar to the mirror hall of an amusement park, but here the mirror is a nanocube and the 'visitor' is light, "Juod NAS metaphorically said.

These captured lights accumulate continuously until they eventually cross the energy threshold of stimulated radiation, producing a strong beam of light with a specific color and direction. The term laser is an abbreviation for stimulated emission of light, which describes this process.

By using high-quality and easily producible silver nanocubes, this laser can operate at record low energy, providing the possibility for large-scale production. Juod NAS pointed out that "chemically synthesized silver nanocubes can be produced in large quantities, and their high quality allows us to use nanoparticle self-assembly technology. Even if the arrangement is not perfect, their properties can compensate for this deficiency.

However, in the early stages of the project, although the simplicity of the method should have been a concern, Lithuanian research funding agencies were skeptical. Some skeptics question whether our simple method can create sufficiently high-quality nanolaser structures, "said Professor Sigitas Tamulevicius from KTU Institute of Materials Science.

Nevertheless, the KTU team firmly believes in the quality of their nanolaser and has successfully secured funding from an international organization. Juod NAS explained, "After extensive work and experimentation, we have demonstrated that using high-quality nanoparticles can achieve effective results even if the array is not perfect.

Source: OFweek

Raccomandazioni correlate
  • The creator of a computer that uses lasers to perform complex tasks at the speed of light has announced a breakthrough in high-performance computing

    LightSolver's new LPU100 system is powered by 100 lasers and can solve the most challenging problems through up to 120100 combinations.This computer was created by Dr. Ruti Ben Shlomi, CEO of LightSolver and Dr. Chen Tradonsky, CTO, a physicist at the Rehowatt Weizmann Institute for Science.It is not suitable for household use because its high computing power exceeds individual needs, but it is su...

    2024-03-21
    Vedi traduzione
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    Vedi traduzione
  • The world's first scalable optical quantum computer prototype has been launched

    Canada's Xanadu Quantum Technologies has developed the world's first scalable optical quantum computer prototype. The company published an article in the latest issue of Nature detailing its design and construction process, and demonstrating how the prototype can be flexibly scaled up to the required scale. This breakthrough lays an important foundation for the development of large-scale quantum c...

    02-12
    Vedi traduzione
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Vedi traduzione
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    Vedi traduzione