日本語

Xi'an Institute of Optics and Fine Mechanics: New progress in large field two-photon scattering microscopy imaging technology

54
2025-04-15 14:47:18
翻訳を見る

Adaptive optics is a technique that improves imaging quality by correcting wavefront distortion. Interference focus sensing (IFS), as a new method proposed in the field of adaptive optics in recent years, has been proven to have significant effects in correcting complex aberrations in deep tissue imaging. This technology is based on measuring a single location within the sample to determine the calibration mode. This article proposes an image-based interferometric focal sensing method (IBIFS), which uses conjugate adaptive optics configuration and feedback information from image quality indicators to progressively estimate and correct the wavefront throughout the entire field of view. The sample conjugate configuration achieves synchronous correction of multiple points within the entire field of view by measuring each position point by point and correcting the mode. We conducted experimental verification of the method using fluorescent microspheres and mouse brain slices as samples on our independently built two-photon microscope system. The results indicate that compared with methods based on regions of interest, this method not only has a larger effective field of view, but also achieves more stable optimization effects.

Recently, the research team led by Dr. Yao Baoli from the National Key Laboratory of Ultrafast Optics Science and Technology at the Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, made progress in the field of large field two-photon scattering microscopy imaging. The related research results were published in Nanophotonics.

The most common AO method in the field of two-photon microscopy imaging is the Zernike mode decomposition method, which has a good effect on compensating for weaker aberrations. However, due to the limitations of the optical memory effect range, phase correction is only effective for a small field of view.

In response to the above issues, the research team proposed a large field wavefront correction method for deep tissue microscopy imaging - image-based interferometric focal sensing wavefront correction method (Figure 1). This method utilizes full field image information evaluation parameters as inputs for the interferometric focus induction method, achieving more stable correction effects while exhibiting high stability and anti-interference characteristics.

 



Figure 1. Schematic diagram of image-based interferometric focus sensing (IBIFS) method


In the resonance scanning galvanometer two-photon excitation fluorescence microscopy imaging system, researchers first performed large field wavefront correction on the fluorescent ball sample under the scatterer (Figure 2). The experimental results showed that the ROI based method only had good correction effect on the field of view near the reference point B1, while the IBIFS method (MHF based) can adjust the correction phase by using the image information feedback of the entire field of view, which has the correction effect of the entire field of view.


Figure 2. Scattering correction experiment results of fluorescent ball samples


In the scattering correction experiment of mouse brain nerve slice samples, the experimental results (Figure 3) showed that the ROI based correction effect depends on the sample structure distribution in the reference area, with better local optimization effect and poorer global optimization effect. The total intensity enhancement factor of the image corrected by the IBIFS method is 37% higher than that based on small area signals, achieving more stable large field of view correction. This technology can be applied to high-speed resonance scanning two-photon microscopy, providing enhanced microscopy imaging tools for fields such as neuroscience and developmental biology.

 



Figure 3. Scattering correction experiment results of mouse brain slice samples


The research is supported by the National Natural Science Foundation of China's National Major Scientific Instrument Development Project, National Key R&D Program, and Shaanxi Province's Key Industrial Chain Project.
The first author of the paper is Yang Ruiwen, a doctoral student from Xi'an Institute of Optics and Fine Mechanics in 2021. The corresponding authors are Researcher Yao Baoli and Senior Experimenter Yang Yanlong. Xi'an Institute of Optics and Fine Mechanics is the first completion unit and the corresponding unit.

Source: opticsky

関連のおすすめ
  • Aspen Laser launches patented four wavelength Ascent laser series in the medical equipment industry

    Recently, Aspen Laser, an emerging global leader in the medical equipment industry, announced that after several months of trial operation, it has officially launched the Ascent laser series and is ready for shipment. It is reported that this new therapeutic laser series, with its outstanding 32 watt combined power and unique patented four wave laser technology in the industry, once again demons...

    2024-08-12
    翻訳を見る
  • Bodor Laser: Laser Cutters Rank First in Global Sales for Six Consecutive Years

    On February 27, at Bodor Laser's global headquarters base in Licheng District, Jinan City, three automated production lines were operating at full capacity, struggling to meet the overwhelming demand. Lu Guohao, Secretary of the Board and Director of the President's Office at Bodor Laser, revealed that the company's laser cutter shipments exceeded 8,000 units in 2024, securing the top spot in glob...

    03-10
    翻訳を見る
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    翻訳を見る
  • Coherent launches 532 nm HyperRapid NXT picosecond laser for ultra precision manufacturing of thin film solar cells

    The leader of material processing industry lasers, Cohen Corporation, announced yesterday the launch of its new HyperRapid NXT industrial picosecond laser, with a working wavelength of 532 nm and an average power of 100 W, which can achieve ultra precision manufacturing of thin film solar cells.The second generation solar cells, which are expected to achieve a leap in energy efficiency, are mainly...

    2024-01-25
    翻訳を見る
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    翻訳を見る