日本語

The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

156
2023-08-04 16:47:18
翻訳を見る

The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities.

The key component of EUV lithography is the EUV light source, which involves generating and manipulating 13.5 nm of high-energy light. This is done by using lasers to generate plasma from tin droplets, which emit extreme ultraviolet radiation. The EUV light is then reflected and focused using a series of precisely designed mirrors, transferring the desired pattern onto a silicon wafer coated with a light-sensitive material called a photoresist.

 

EUV lithography has several advantages over previous lithography techniques. First, it can significantly increase chip density, enabling the production of more powerful and complex ics.

 

Second, it simplifies the manufacturing process and increases production efficiency by reducing the number of steps required for pattern transfer. Finally, EUV lithography allows for better control of critical dimensions and reduced pattern variability, resulting in improved chip performance and yield.

 

EUV lithography plays a key role in the production of advanced ics for a variety of applications such as high-performance computing, artificial intelligence and mobile devices.

 

Foundries are expected to grow at the highest CAGR during the forecast period.

In the commercial sector, foundries are manufacturing plants that specialize in providing semiconductor manufacturing services to semiconductor companies and integrated device manufacturers (IDMs). Foundries are primarily focused on manufacturing processes for the semiconductor industry and do not engage in chip design.

 

Foundries play a vital role in the semiconductor industry by providing manufacturing services to companies that lack their own manufacturing facilities or choose to outsource chip production.

 

Fabless companies and ID work with foundries to transfer their chip designs, known as intellectual property (IP), to foundries for manufacturing. Well-known foundries that provide semiconductor manufacturing services including EUV lithography include companies such as TSMC, GlobalFoundries, Samsung Foundries, and others.

 

The growth of foundry companies can be attributed to their substantial investments in EUV lithography, with Asia-Pacific countries being the main contributors to the expansion and advancement of the EUV lithography market.

 

During the forecast period, the EUV mask segment is expected to grow at the second highest CAGR in the EUV lithography equipment market.

 

EUV masks, also known as EUV masks or EUV photomask, play a crucial role in an advanced lithography process called extreme ultraviolet lithography (EUVL). EUV lithography is a state-of-the-art technology for manufacturing the next generation of next-generation semiconductor devices characterized by smaller feature sizes and enhanced performance.

 

EUV masks help to pattern integrated circuits on semiconductor wafers by containing circuit patterns projected onto the wafer during the photolithography process. Unlike traditional optical masks used in older lithography techniques, EUV masks are specifically designed to function in ultraviolet light at wavelengths of about 13.5 nanometers. They consist of thin substrates coated with multiple layers of reflective material that help to reflect and focus EUV light onto the wafer, enabling precise and high-resolution patterning. The complex structure of the EUV mask involves advanced manufacturing techniques and strict quality control measures to ensure the accuracy and reliability of the circuit pattern. Several companies are involved in the manufacture of EUV masks and related products,

The Asia Pacific region is expected to grow at the highest CAGR during the forecast period.

 

Taiwan is home to leading semiconductor companies such as Taiwan Semiconductor Manufacturing Company (TSMC), the world's largest dedicated semiconductor foundry. TSMC has been at the forefront of adopting and advancing EUV lithography technology to be able to produce advanced chip sizes with smaller sizes and higher performance.

 

The company has made significant investments in EUV infrastructure and has been instrumental in driving the development and commercialization of EUV lithography systems. With its strong semiconductor ecosystem and commitment to technological innovation, Taiwan plays a vital role in increasing the capability and widespread adoption of EUV lithography in the semiconductor industry.

 

Some companies are innovating in EUV lithography technologies and systems. For example, in August 2020, TSMC developed the world's first environmentally friendly dry cleaning technology for EUV light hoods, designed to replace traditional cleaning processes.

 

Source: Laser Network

関連のおすすめ
  • MIT researchers have demonstrated a novel chip based resin 3D printer

    Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.The prototype processor does not have mobile components, but ...

    2024-06-17
    翻訳を見る
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    翻訳を見る
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    翻訳を見る
  • The globalization of three-color laser technology will be further accelerated

    Recently, the IFA2023 Consumer Electronics Show in Berlin, Germany opened, Hisense exhibited "three-color laser projection family bucket" attracted the attention of media and tourists from all over the world.Since Hisense's young fashion brand Vidda launched a series of three-color laser projection, its accumulation based on three-color laser technology is competing globally and has become a...

    2023-09-04
    翻訳を見る
  • Guangfeng Technology releases the world's first versatile laser headlights

    On April 25th, 2024, the Beijing International Auto Show officially opened, and Guangfeng Technology released the world's first ALL-IN-ONE all-around laser headlights.This headlight is the first to integrate multiple functions such as high beam ADB headlights, color changing temperature headlights, fog lights, ground information display, car cinema, etc. into a small volume headlight module, achie...

    2024-04-29
    翻訳を見る