日本語

The company has made key breakthroughs in the development of laser micromachining systems

236
2023-08-04 16:59:22
翻訳を見る

3D-Micromac AG, a provider of laser micromachining systems, has announced new advances in laser micromachining solutions for magnetic sensors, micro-leds, manufactured power devices and advanced packaging of semiconductors.

 

Since the first working laser came out more than 60 years ago, lasers have been widely used in the industrial market. Uwe Wagner, CEO of 3D-Mircomac, said: "In the semiconductor industry, lasers play many roles, from wafer cutting and drilling to patterning. As a leading expert in laser micromachining, 3D-Micromac offers cost-effective, scalable and versatile products and solutions to support our customers' needs from development and prototyping through to series production.

3D-Micromac's microPRO XS OCF system can be used for ohmic contact formation in SiC power devices. It has the advantages of high precision and repeatability, as well as low thermal damage, which can prevent thermal damage on the wafer front, which can negatively affect device performance. By treating the metallized back of SiC wafers with an UV-wavelength diode-pumped solid laser source with nanosecond pulses and point scanning, the system is able to prevent the formation of large carbon clusters and other heat-related damage at the front of the wafer.

 

New features on the mircoPRO XS OCF include special tool designs that minimize footprint and reduce cost of ownership. It eliminates the need to splice 200mm SiC wafers, thereby avoiding dead zones that negatively affect yield and device quality. In addition, the system is equipped with a large-sized energy density machining window that ensures constant forward voltage, thereby extending uptime and yield.

 

The microVEGA xMR system provides a high-flux laser annealing solution for the formation of monolithic magnetic sensors. The system is a large, flexible tool that can accommodate Giant magnetoresistance (GMR) and tunnel magnetoresistance (TMR) sensors. It can also adjust the magnetic direction, sensor position and sensor size, making the production of magnetic sensors easier. On the current generation of platforms, microVEGA xMR delivers extremely high pass rates of up to 500,000 sensors per hour. The company is expected to release new developments, including a new beam positioning system, to achieve higher yields.

 

The microPREP PRO system can be used for laser-based sample preparation in a variety of sample preparation applications. With the FIB tool, it eliminates most sample preparation and reduces the FIB to final positioning, reducing the time to create the final sample to less than an hour.

 

New semiconductor applications for microPREP PRO include micro/nano X-ray tomography, layering, cross section, stripping and ablative layers to expose wires for detection and testing. It also supports the promotion of defective mircoLED for subsequent inspection and fault analysis. MicoPREP Pro can also be used to disconnect failed connections in order to run additional failure analysis tests on the device.

 

The company also introduced its new microPREP PRO FEMTO system, which features a femtosecond laser source and optimized optics to deliver high-speed atom probe tomography (APT). The system reduces ATP sample preparation time with millimeter accuracy while avoiding thermal damage to the sample.

 

About 3D-Micromac

Founded in 2002 and headquartered in Chemnitz, Germany, 3D-Micromac AG is an industry leader in laser micromachining and roll-to-roll laser systems for a range of applications such as photovoltaic, semiconductor, glass and display markets. 3D-Micromac is also one of the first companies in the world to focus on material processing using ultrashort pulse lasers, with a focus on excimer laser applications in microprocessing.

 

Source: OFweek

関連のおすすめ
  • Redefining the Future of Sensing: In depth Study of Novel Plasma Waveguide Structures

    Imagine in such a world, the detection of trace substances is not only fast, but also incredibly accurate, indicating a new era of technological progress in health, safety, and environmental monitoring. Due to pioneering research on plasma waveguide structures, this vision is becoming increasingly realistic, aimed at enhancing refractive index sensing and spectral filtering. This innovative method...

    2024-03-04
    翻訳を見る
  • The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

    A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.With the advent of integrated c...

    2023-08-10
    翻訳を見る
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    翻訳を見る
  • Photon automation expands through new laser application laboratories

    Photon Automation, Inc., headquartered in Greenfield, Indiana, has been committed to providing automated laser technology solutions since 2000. The company is pleased to announce the opening of its state-of-the-art laser application laboratory in Farmington Hills, Michigan. This 7400 square foot facility will be led by renowned laser physicist Dr. Najah George, who has over 35 years of extensive e...

    2023-09-01
    翻訳を見る
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    翻訳を見る