日本語

The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

118
2023-10-28 10:16:56
翻訳を見る

The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.

Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been a research focus of international scientific and technological attention.

On October 26th, the first Ultrafast Laser Application Development Conference hosted by the China Optical Engineering Society opened at the Songshan Lake Materials Laboratory in Dongguan. Nearly 500 renowned academicians, experts, and enterprise representatives from the laser industry have jointly discussed the development trends, technological applications, and cutting-edge developments of ultrafast laser technology through technical exchanges, industry forums, demand docking, project roadshows, and other forms, promoting the high-quality development of the ultrafast laser industry.

"This year's Nobel Prize in Physics was awarded to scientists in the field of attosecond laser, which fully reflects the important position in the field of ultrafast laser science and technology." Wang Lijun, chairman of the conference and academician of the CAS Member, said that ultrafast lasers represented by picosecond and attosecond have broad application prospects in new generation information technology, additive manufacturing, aerospace, new energy vehicles, biomedicine and other fields. In this context, the first Ultrafast Laser Application Development Conference emerged.

At the opening ceremony, Wang Weihua, an academician of the CAS Member and director of the Songshan Lake Materials Laboratory, revealed that the Songshan Lake Materials Laboratory would jointly build the first advanced attosecond laser facility in China with the Institute of Physics of the Chinese Academy of Sciences and the Xi'an Institute of Optics and Mechanics, of which eight beam line construction tasks would be landed in Dongguan.

At present, the Songshan Lake Materials Laboratory has established the Ace Science Center, introducing the Chief Scientist Wei Zhiyi, and gathering a large number of outstanding researchers and engineers from both domestic and international sources. It is hoped that in the future, the laboratory can build a research center for ultrafast matter science, relying on large facilities such as China's scattered neutron source in the surrounding area to achieve world-class results in energy materials, information materials, and other fields.

Within two days, the conference will focus on two major topics: ultrafast laser technology and industry, and hold over 20 special seminars or reports to jointly explore forward-looking ideas and innovative achievements in the new situation, as well as how capital, technology, and market can promote the development of the laser industry and other hot topics.

At the same time, the conference will take multiple measures to jointly assist in the transformation and implementation of achievements, inviting leading enterprises at all levels of the industrial chain, key research teams, universities and research institutes, etc. to showcase outstanding scientific and technological achievements and application cases. Multiple technical exchanges, project roadshows, talent recruitment, docking negotiations, and other activities will also be held on-site.

Source: Southern Daily

関連のおすすめ
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    翻訳を見る
  • Blue laser enterprise NUBURU obtains $5.5 million bridge financing

    Recently, NUBURU, a supplier of high-power and high brightness industrial blue laser technology in the United States, announced that it has reached bridge loan agreements ("bridge loans" or "bridge financing") with existing and new institutional investors.The principal of this bridge financing is $5.5 million, aimed at providing funding for the company until it obtains long-term credit financing,...

    2023-11-23
    翻訳を見る
  • Sales and order volume of Deutsche Bahn Group have decreased

    Recently, TRUMPF, a leading global provider of machine tools and laser technology solutions, released preliminary data for the 2023/24 fiscal year: compared to the previous fiscal year, sales decreased by about 4% year-on-year to 5.2 billion euros; The order amount decreased by 10% to 4.6 billion euros. The Tongkuai Group ended its 2023/24 fiscal year on June 30, 2024, with a decrease in both s...

    2024-07-22
    翻訳を見る
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    翻訳を見る
  • NUBURU will enter a new stage of diversified development

    Recently, NUBURU, a global developer of high-power and high brightness industrial blue light laser technology, announced the signing of a strategic commitment letter, officially launching a deep layout in the field of national defense and security. This transformation plan covers capital restructuring, technology mergers and acquisitions, and management team upgrades, marking a new stage of divers...

    02-26
    翻訳を見る