日本語

The "white" laser device from startup Superlight Photonics will completely transform imaging

217
2023-10-28 10:34:02
翻訳を見る

Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.

This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Multidisciplinary Sciences in the Department of Ultrafast Dynamics, Haider Zia became an expert in the field of "white" lasers. As a postdoctoral fellow at Twente University, he continued to manipulate photons, but this time they were limited to chips. He suddenly realized that he could combine his knowledge in these two fields to manufacture chip broadband lasers.

At first, Zia thought his idea was an interesting scientific advancement. Only during discussions with colleagues and UT group meetings did he realize that his invention in integrated photonics could revolutionize many industrial and medical imaging technologies. Once I realize there is great market potential, I am excited to push it into the industry, "Zia said.

Cees Links shared Zia's enthusiasm. Lynx reached a deal with Apple, which is often considered to have ushered in the Wi Fi era. He founded the fabless Greenpeak Technologies in 2004. The company focuses on wireless technology for IoT and smart home applications and was acquired by American multinational company Qorvo in 2016. Links stayed at Qorvo until the end of last year, and then decided to start coaching startups.

After being introduced to Zia's newly established company Superlight Photonics, Links quickly realized that he wanted to be deeply involved. He joined this startup as CEO in August last year. Zia and Links have recently obtained funding from DeeptechXL and Oost NL and developed a practical product to showcase to potential customers. They are now searching for the perfect market entry point for their on chip "white" lasers.

Superlight lasers are not actually white because they work in infrared light. However, this is a useful analogy as it clearly indicates that they emit a wide spectrum - unlike traditional lasers, which typically emit a single wavelength. Just like white light composed of a series of colors, the emission spectrum of Superlight's so-called supercontinuum laser spans a wide wavelength range of up to one thousand nanometers.

This wide spectrum is very convenient in certain imaging applications, such as searching for microcracks in metals, eye measurements, detecting skin cancer, and ultra precise positioning measurements. It's like transitioning from black and white to color television: it adds a lot of information, enabling more accurate and high-resolution measurements, "Links said.

No wonder many companies have developed their own supercontinuum lasers, either using multiple light sources or scanning a series of wavelengths by using diffraction gratings to decompose a single light source. The disadvantage of this method is that it can lead to cumbersome and power consuming settings. On the other hand, Zia's "super laser" is based on a chip that utilizes nonlinear optical effects to broaden the output spectrum of a monochromatic laser source. This has created a compact and lightweight device that requires thousands of times less power than any other product currently on the market.

Superlight lasers are not actually white because they work in infrared light. However, this is a useful analogy as it clearly indicates that they emit a wide spectrum - unlike traditional lasers, which typically emit a single wavelength. Just like white light composed of a series of colors, the emission spectrum of Superlight's so-called supercontinuum laser spans a wide wavelength range of up to one thousand nanometers.

This wide spectrum is very convenient in certain imaging applications, such as searching for microcracks in metals, eye measurements, detecting skin cancer, and ultra precise positioning measurements. It's like transitioning from black and white to color television: it adds a lot of information, enabling more accurate and high-resolution measurements, "Links said.

No wonder many companies have developed their own supercontinuum lasers, either using multiple light sources or scanning a series of wavelengths by using diffraction gratings to decompose a single light source. The disadvantage of this method is that it can lead to cumbersome and power consuming settings. On the other hand, Zia's "super laser" is based on a chip that utilizes nonlinear optical effects to broaden the output spectrum of a monochromatic laser source. This has created a compact and lightweight device that requires thousands of times less power than any other product currently on the market.

Source: Laser Network

関連のおすすめ
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    翻訳を見る
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    翻訳を見る
  • Laser technology reveals hidden gases in complex mixtures

    Laser Network reported on January 11th that modern equipment has been fine tuned to detect highly specific gases, including trace gases found in the atmosphere, gases present in combustion exhaust emissions, and gases used in technology plasma applications.They achieve this by calculating the percentage of light at a certain wavelength that is absorbed or attenuated by the sample. This way, the co...

    2024-01-11
    翻訳を見る
  • New technology from Swedish universities enables real-time laser beam forming and control

    Dr. Yongcui Mi from Western University in Sweden has developed a new technology that enables real-time laser beam shaping and control for laser welding and directional energy deposition using laser and metal wire. This innovative technology draws on the mirror technology used in advanced astronomical telescopes.Adaptive beam shaping using deformable mirror technology (Image source: Western Univer...

    2024-12-19
    翻訳を見る
  • Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering

    On May 7, 2024, the official website of the Canadian Academy of Engineering announced that Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering.Dr. Gu BoAcademician of the Canadian Academy of EngineeringFounder/President of Bose Photonics, USADr. Gu Bo is recognized as a pioneer and academic leader in the global field of fiber lase...

    2024-05-07
    翻訳を見る