日本語

More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

98
2023-11-01 14:59:21
翻訳を見る

μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.

It is understood that scientists at the Lawrence Livermore Laboratory (LLNL) Ignition Facility (NIF) in the United States have proposed a plan called "Science and Safety Intensive Compact μ The meson source "(ICMuS2) aims to quickly generate μ Mesons, using high-power lasers to accelerate capture μ The time required for meson images, thereby reducing the required exposure time.

This project is a huge challenge for particle physics detection. John Harton from the High Energy Physics Group in the Department of Physics at Colorado State University said. John Harton will lead the Colorado State University team responsible for developing collaborative projects μ The meson detector, he said:“ μ The number of meson particles far exceeds that of other particles, and we are using various tools to screen them.

μ The key step in sub generation is the wake left by the ultra intense short laser pulse accelerating the propagation of electrons in the plasma.
ICMuS2 plans to develop a portable, laser based μ The technical design of meson emitters has a flux greater than that of naturally occurring ones μ Mesons are several orders of magnitude larger and can be used for a wide range of imaging applications. This includes special nuclear material exploration, mining, and geophysics. Brendan Reagan, from NIF and the Advanced Photonics Technology Project in Photonics Science, stated that in addition to laser development, the project will also combine advanced numerical simulations of high-energy particle physics, plasma physics, high-performance computing systems, as well as system engineering and integration.

This work was carried out in collaboration with the extreme light infrastructure ERIC (ELI) of the Czech ELI beamline facility, Colorado State University, University of Maryland (UMD), Lockheed Martin, XUV Lasers, and Lawrence Berkeley National Laboratory (LBNL). LLNL also participated in another activity under the MuS2 project led by LBNL.

The preliminary experiment will be conducted using a plasma waveguide developed by UMD in an advanced laser at the Extreme Photonics High Repetitive Rated Watt Laser Facility at Colorado State University. High energy acceleration and μ The meson generation experiment will be conducted at ELI Beamlines using its L4-Aton 10-PW laser system.

The first phase of this four-year plan will focus on principle verification experiments and the impact of laser generated μ A clear demonstration of mesons. The second stage will attempt to demonstrate high energy μ Production and Transportability of Mesons μ Design of meson sources.

In addition, all aspects of the plan are based on the development of large-aperture Thulium laser technology under the guidance of the LLNL laboratory's research and development program, as well as the investment in laser driven accelerators by the High Energy Physics and Accelerator Research and Production Office of the US Department of Energy Science Office.

Source: Laser Manufacturing Network

関連のおすすめ
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    翻訳を見る
  • BluGlass successfully raised $5.87 million to accelerate GaN laser production and delivery

    Recently, BluGlass, a leading global semiconductor development company, successfully completed its stock purchase plan (SPP) and raised $5.87 million in funds (excluding costs). This SPP provides eligible shareholders with the opportunity to subscribe to up to $100000 in new shares of BluGlass at a discounted price of $0.037 per share, along with free additional options. This initiative has gained...

    2024-04-12
    翻訳を見る
  • TriLite has partnered with AMS OSram to develop AR smart glasses displays

    TriLite has announced a technical collaboration with ams OSRAM, a global leader in smart sensors and transmitters. Ams Osram will supply its sub-assembled RGB laser diode to "light up" TriLite's Trixel® 3 laser beam scanner (LBS), the world's smallest AR smart glasses projection display.The award-winning Trixel® 3 LBS offers breakthrough compactness and light weight, as well as a bright an...

    2023-09-06
    翻訳を見る
  • New Meltio robot unit provides large-scale line laser DED

    Meltio is an expert in the field of cost-effective linear laser metal deposition additive manufacturing technology (directed energy deposition, DED) and has launched the new Meltio Robot Cell, a turnkey metal additive manufacturing solution equipped with industrial robotic arms and the recently launched slicing software Meltio Space.The new hardware aligns with the vision of this Spanish company t...

    2023-09-22
    翻訳を見る
  • More evidence of cosmic gravitational wave background: Laser interferometer gravitational wave observatory composed of two detectors

    The gravitational wave background was first detected in 2016. This was announced after the release of the first dataset by the European pulsar timing array. The second set of data has just been released, combined with the timed array of Indian pulsars, and both studies have confirmed the existence of the background. The latest theory seems to suggest that we are seeing a comprehensive signal of th...

    2024-05-21
    翻訳を見る