日本語

DLR and Tesat laser terminals pave the way for high-speed data transmission from space

141
2023-11-02 15:16:04
翻訳を見る

Due to the surge in the deployment of small satellites, the increasing congestion of data transmission has always been a persistent problem in the aerospace industry. The collaboration between the Communication and Navigation Research Institute of the German Aerospace Center and Tesat Spacecom GmbH and Co. KG TESAT provides a powerful solution. They successfully developed and tested OSIRIS4CubeSat, a compact laser communication terminal designed specifically for microsatellites, setting new standards in compact design and high-speed data transmission.

This success is the result of years of research in the field of optical satellite communication, "said Florian David, Director of DLR Communications and Navigation Research Institute. It showcases the astonishing potential of designing small, lightweight, and powerful optical satellite terminals. This is an important component of future satellite systems, such as for Earth observation or giant constellations.

For compact design
Setting standard cube satellites is becoming increasingly popular due to their standardized size and modular characteristics. Each cube shaped unit has a side length of 10 centimeters and can be modularized and expanded. The OSIRIS4CubeSat terminal complies with this standard, adopts a patented design, and uses electronic circuit boards as the mechanical foundation of optical components. The new design configuration achieves compactness without affecting performance, which is a significant leap for industries that prioritize cost-effectiveness.

The terminal was first launched on CubeL satellite as part of the PIXL-1 mission on June 24, 2021. Subsequent rigorous testing confirmed its reliability and error free functionality in space, proving that it is not just an experimental novelty.

Better than traditional radio systems
Data rate is a crucial aspect for any communication system, and the OSIRIS4CubeSat terminal will not disappoint people. It achieves a data rate of up to 100 megabits per second, which is superior to traditional radio systems. It is not affected by electromagnetic interference and eliminates channel crosstalk, which is a common drawback of traditional wireless channels.

This highlights the enormous opportunities brought by collaboration between German research and industry, "said Siegbert Martin, Chief Technology Officer of TESAT.

This technological advantage is particularly important as it simplifies the typically complex approval processes of regulatory agencies such as the Federal Network Agency and the International Telecommunication Union.

Data Security and Integration
In order to transmit data to Earth, the terminal utilized an encoding program developed by DLR. These programs ensure zero loss transmission and protect data from atmospheric interference. It is worth noting that the CubeL satellite and its OSIRIS4CubeSat terminal have been successfully integrated into the existing infrastructure of the German Space Operations Center. This marks a crucial step towards simplifying the operation of future microsatellite missions.

Business preparation
Even before the completion of the PIXL-1 task, Tesat had incorporated the technology into its commercial product line. These terminals are now available under the names "CubeLCT" and "SCOT20", not only experimental but also ready for a wider range of industrial applications. This enables the technology to be used for various future satellite missions to meet research and commercial needs.

The launch of the OSIRIS4CubeSat terminal has solved multiple challenges from data congestion to regulatory bottlenecks, making it an indispensable part of the next generation satellite system. Its success marks an increasing synergy between research programs and commercial applications, marking a significant step forward in the rapidly developing aerospace field.

Source: Laser Network

関連のおすすめ
  • Researchers have discovered a new method to improve the resolution of laser processing

    Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.Their research results are published in the journal Optics Letters.Laser processing, like drilling and cutting, is crucial in industrie...

    2024-03-28
    翻訳を見る
  • New LiDAR can 'see' faces from hundreds of meters away

    At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and c...

    02-11
    翻訳を見る
  • Juguang Technology launches miniaturized high-power semiconductor laser stack GS09 and GA03

    In today's technology field, Juguang Technology released two highly anticipated high-power semiconductor lasers on December 13th: GS09 and GA03. These two products are leading the innovation wave in the laser industry with their miniaturized design, excellent thermal management capabilities, and extensive customization flexibility.GS09 revolutionizes chip spacing by compressing the width of the st...

    2023-12-15
    翻訳を見る
  • Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

    Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect...

    2023-12-22
    翻訳を見る
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    翻訳を見る