日本語

It is said that laser additive manufacturing is good, but what is the advantage?

212
2023-11-08 14:06:49
翻訳を見る

When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.

In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the Stone Age when cutting wood into spears and splitting stones into axes, to later turning, milling, drilling, chamfering, and then to electrochemical, chemical, and high-temperature processing, although the technology has improved, the idea is still continuous, which is to peel off or decompose a certain part of the processed material in various ways.

The reason why additive manufacturing is called a groundbreaking technology is because it is more like the process of building blocks, using powdered materials as raw materials to construct the objects we need through layer by layer printing. If traditional processing technology is "subtraction", then additive manufacturing can be said to be "addition". One is' from being to being 'and the other is' from being to being', which is a revolutionary change in industrial production thinking.

The flexibility and variability of lasers and the high degree of freedom in additive manufacturing can be said to be a perfect match. In the Selective Laser Melting Deposition (SLM) process, laser can become a high-power and high-quality heat source for additive manufacturing. Materials such as metals, plastics, ceramics, etc. can be melted and stacked layer by layer to form the desired 3D structure. Another type of photocuring molding technology (Stereo lithography Apparatus, SLA) is the use of ultraviolet or laser beams to irradiate and solidify liquid photosensitive resins. From point to line, from line to surface, form the required three-dimensional structure.

Image source: pixabay

Laser additive manufacturing parts have a fine structure and excellent performance, and are commonly used in industries such as aerospace, automobiles, ships, medical and health that require high precision and performance of products. This is because laser additive manufacturing has the following advantages compared to traditional processing modes:

01 Precision and meticulous effect
Due to the fact that additive manufacturing is built by stacking layers, the required geometric shapes can be designed in advance in the software. During processing, the idea of "subtracting" may not be effective for the detailed structure inside the workpiece or cavity (although there is currently laser engraving technology, it is usually only applicable to transparent materials and has limitations). However, for additive manufacturing, even the most delicate structure can start from micro particles and achieve processing effects.

02 is both personalized and versatile
Additive manufacturing technology itself has extremely high flexibility, allowing customized products to be made according to needs to meet special needs. For example, in medical scenarios, dental patients need to customize a denture, and in cases where universal products cannot perfectly fit, relevant products can be customized. For large-scale equipment, Northwestern Polytechnical University also uses laser additive manufacturing technology to produce TC4 alloy wing ribs with a length of over 3 meters for COMAC C919. With the assistance of software, additive manufacturing data can achieve perfect reproduction of the geometric shape, size, and structure of objects under controlled processing conditions.

03 High material utilization rate
Additive processing is truly a "lossless processing". In the traditional sense of processing, the process of "subtracting" means that cutting, turning, and carving will inevitably generate a certain amount of waste. Additive manufacturing technology directly processes materials as needed, theoretically enabling the preparation of as many materials as needed, reducing the generation of waste. Although the current cost of additive processing cannot be ignored, "non-destructive processing" will be the future development trend.

Image source: pixabay

The top three industries with the highest proportion of additive manufacturing usage in 2022 are aerospace, medical, and automotive industries. It can be seen that in terms of cost, the current additive manufacturing still has some limitations and is not suitable for promotion in industries with low profit margins. Rather than being a new processing method, additive processing provides a valuable "way of thinking" for the manufacturing industry. The perfect integration of laser technology and additive processing will not only be limited to current processing processes such as SLM and SLA, but also have the potential to explore more process models on the path of "addition".

Source: OFweek

関連のおすすめ
  • Fiber laser and deburring machine have improved the production efficiency and manufacturing capability of MITS Alloy

    The heavy-duty aluminum Ute tray and roof series of MITS Alloy have been greatly welcomed and demanded.The company is headquartered in Newcastle and was founded by Tim Lightfoot and Tony Brooks in January 2015. Tim's existing business, Safety MITS, provides maintenance equipment for mining, earthwork transportation, transportation, and related industries. They jointly determined that the four-whee...

    2024-05-15
    翻訳を見る
  • 20W High Power Fiber Optic Frequency Comb with 10 to 19 Power Outside Ring Frequency Stability

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification. However, due to the un...

    2023-10-20
    翻訳を見る
  • Snapmaker introduces new 20W and 40W laser modules

    Snapmaker has opened pre-orders for 20W and 40W laser modules, which are significant upgrades to the modules available on existing Snapmaker machines.Snapmaker says that with the 40W module installed, you will be able to cut 15 mm basswood plywood at a time at a speed of 20 mm/SEC. With 20W, you will cut 10mm at a rate of 10mm/SEC. That's a lot more than Artisan and Snapmaker 2.0 - both are comp...

    2023-08-04
    翻訳を見る
  • Scientists are using lasers to create lunar paving blocks

    Original Hal Bowman 9000 Scientific RazorThe 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAMBy using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these exp...

    2023-10-14
    翻訳を見る
  • The Indian medical laser market has entered a rapid growth mode

    According to industry forecasts, the medical laser market in India, especially in the field of medical aesthetics, is expected to be worth up to 71572 million rupees in fiscal year 2023. It is expected that this number will increase to 1.8358 billion rupees by fiscal year 2031, with a compound annual growth rate of 12.49%.Alma Medical, a global innovator in the field of medical lasers in Israel, h...

    2024-07-05
    翻訳を見る