日本語

Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

128
2023-08-21 10:55:33
翻訳を見る

Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.

Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manufacturer ACSL Ltd. This startup company raised $25 million earlier and plans to collaborate with a subsidiary of Toshiba to build a small experimental reactor in Japan in 2024. Professor Nakamura of the University of California, Santa Barbara said: Japan excels in manufacturing, while the United States excels in business and marketing. They hope to combine the advantages of both countries to build nuclear fusion reactors.

Currently, the Blue Laser Fusion program is commercializing nuclear fusion reactors, which can generate 1 gigawatt of electricity, equivalent to the output power of a regular nuclear power reactor. The construction cost is approximately $3 billion. Nuclear fusion technology aims to replicate the processes that occur on the sun, generating a large amount of energy in a controlled manner. Unlike nuclear fission, fusion does not produce radioactive waste, making it a promising energy source not only for Earth but also for space missions.

In order to initiate fusion ignition, researchers had to heat the fuel to over one million degrees Celsius, and they used various methods to accomplish this feat. However, the main challenge lies in maintaining the reaction and generating more energy than is consumed during the fusion process. In seeking to maintain fusion reactions, nuclear scientists use two main methods. The first involves magnetic confinement, in which a powerful magnet is used to maintain the fuel in the plasma state within a torus or donut shape. This method led to the creation of the Tokamak reactor and sparked great interest and investment from companies and venture capitalists; The second method is to use a laser and emit it rapidly and continuously. However, the disadvantage of this method is that large equipment cannot emit laser in continuous mode, while small equipment cannot generate sufficiently high output to ignite fusion fuel.

This is where blue laser fusion believes it can bring about change.

Nakamura was awarded the Nobel Prize for his groundbreaking work in developing blue light-emitting diodes. He believes that his company can utilize his semiconductor expertise to create a safe path for achieving nuclear fusion and transforming it into commercially viable technology. Due to the fact that Blue Laser Fusion Company is currently applying for a patent, the specific details of this method have not yet been disclosed. However, Nakamura is confident in the feasibility of building a fast shooting laser and envisions building a one megawatt nuclear reactor in Japan or the United States by the end of this century. Before reaching this milestone, the company plans to build a small experimental factory in Japan by the end of next year.

In the months since its establishment, Blue Laser Fusion has submitted more than ten patent applications in the United States and other countries. The company is still researching using boron instead of deuterium as fuel for fusion reactors. The company claims that boron as a fuel does not produce harmful neutrons, making it a more favorable choice. Blue Laser Fusion also collaborates with other Japanese companies, such as Toshiba Energy Systems and Solutions, a manufacturer of nuclear power plant turbine mechanisms, and Tokyo YUKI Holdings, which provides metal processing services. In December 2022, the Lawrence Livermore National Laboratory in the United States successfully demonstrated the use of lasers to generate more energy from nuclear fusion processes. Nevertheless, this achievement is only temporary, and to make blue laser nuclear fusion commercially viable, they must demonstrate long-term sustainability.

Source: OFweek


関連のおすすめ
  • MKS Instruments announces full year 2024 financial report

    Recently, MKS Instruments released its Q4 and full year financial results for 2024. According to the report, MKS's revenue for the fourth quarter of 2024 reached $935 million, a year-on-year increase of 4.7%, with a GAAP net income of $90 million; In 2024, the annual revenue was nearly 3.6 billion US dollars, a year-on-year decrease of 0.9%. GAAP net revenue was 190 million US dollars, turning los...

    02-20
    翻訳を見る
  • Precision laser manufacturer Preco appoints Jacob Brunsberg as CEO

    Recently, Preco, a leading enterprise in precision laser material processing and laser equipment manufacturing solutions, officially announced a major personnel appointment: Jacob Brunsberg, an outstanding senior manufacturing and technology management expert, has been appointed as its CEO. Mr. Brunsberg is a renowned senior manager in the field of advanced manufacturing and technology, with man...

    2024-09-23
    翻訳を見る
  • Atomstack Maker A5 V2: A laser engraving machine suitable for beginners

    In the recent DIY field, innovative and increasingly affordable laser engraving machines have emerged, mainly designed for first-time users in this field. A particularly noteworthy example in this regard is the Atomstack Maker A5 V2 model. This device is known for its versatility and ease of use, making it an ideal choice for beginners in the world of laser engraving.The Atomstack Maker A5 V2 is a...

    2024-01-03
    翻訳を見る
  • The rare decay of the Higgs boson may point to physics beyond the standard model

    Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quan...

    2024-01-26
    翻訳を見る
  • Shanghai Optical and Mechanical Institute has made progress in ultra-low threshold Rydberg state single mode polariton lasers based on symmetric engineering

    Recently, the research team of Dong Hongxing and Zhang Long from the Research Center of Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, in cooperation with Huazhong University of Science and Technology, reported a new mechanism for generating dynamically tunable single-mode lasers from exciton polaritons with ultra-low thresholds,...

    2023-10-12
    翻訳を見る