日本語

Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

120
2023-08-22 14:51:18
翻訳を見る

Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.

This technology is developed in response to biophoton sensing technology, mainly utilizing a miniaturized photonic integrated circuit (PIC) system with highly stable fiber connections.

(Image source: Fraunhofer IZM)
In the past, adhesive was often used in fiber optic interconnections of photonic integrated circuits. However, in the long run, this solution will lead to the occurrence of optical degradation, ultimately resulting in optical transmission loss. The softness of the adhesive can cause the position of the component to change over time and create an interference point between the two layers of glass. As the adhesive ages, this can lead to signal attenuation and brittle connections.

Due to the different volumes of glass fiber and substrate, the heat capacity of the two parts to be joined is not equal, resulting in different heating and cooling behaviors. If there is no appropriate compensation for the difference, it may lead to deformation and cracks during the cooling process. To address this issue, the team used a separate adjustable laser to uniformly preheat the substrate, allowing the melting stage of the fiber and substrate to occur simultaneously.

The technology developed by this project is no longer limited to the experimental setup stage, and the system they developed is designed for industrial environments. The Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany, in collaboration with Finicontec Service, implemented this technology process in automation systems and found that it has high repeatability and scalability. It is equipped with thermal process monitoring up to 1300 ℃, accurate to 1 μ M's positioning system, as well as imaging recognition process and control software.

The potential of high automation enables customers to use photonic integrated circuits (PICs) with maximum coupling efficiency. Industrial integration means a leap in the field of biophotonics applications, as well as quantum communication and high-performance photonics, "G ó mez said.

Source: OFweek

関連のおすすめ
  • A professor from Sun Yat sen University proposes a new clean energy technology for laser manufacturing

    Energy conversion technology is an important research direction in modern science and engineering. Scientists are exploring new catalytic chemical methods to achieve the conversion of energy chemicals, such as photocatalysis and electrocatalysis. However, these highly anticipated catalytic chemistry technologies still have some problems in practical applications, and there is still a certain dista...

    2024-06-13
    翻訳を見る
  • EO Technologies from South Korea enters the glass substrate processing market

    Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass sub...

    2024-06-18
    翻訳を見る
  • BluGlass successfully raised $5.87 million to accelerate GaN laser production and delivery

    Recently, BluGlass, a leading global semiconductor development company, successfully completed its stock purchase plan (SPP) and raised $5.87 million in funds (excluding costs). This SPP provides eligible shareholders with the opportunity to subscribe to up to $100000 in new shares of BluGlass at a discounted price of $0.037 per share, along with free additional options. This initiative has gained...

    2024-04-12
    翻訳を見る
  • ABB will add optical sensors to four greenhouse gas monitoring satellites

    ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas ...

    2023-12-06
    翻訳を見る
  • Tsinghua University develops efficient and stable perovskite quantum dot deep red light devices

    Semiconductor quantum dots have the advantages of high quantum yield, narrow emission spectrum, and compatibility with solution processes. They have shown broad application prospects and enormous economic value in the field of optoelectronic materials and devices, and related research has won the Nobel Prize in Chemistry in 2023.Compared with traditional II-VI and III-V quantum dots (such as CdSe,...

    03-18
    翻訳を見る