日本語

Vigo University School of Technology invents laser glass recycling system

93
2024-01-19 14:56:11
翻訳を見る

LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come from Slovakia, Germany, and France, as well as representatives from CSIC's Spain. The project, with a duration of three years and a budget of nearly 3 million euros, was selected in the public solicitation of EIC Pathfinder for Horizon Europe.

Professor Juan Pou explained that the current glass recycling process uses technology based on large-scale facilities, which centralize the process. This means that melting several tons of glass using inflexible processes requires high energy consumption, as well as the cost of transporting the glass to large recycling plants. EverGlass suggests developing a new technology based on the use of laser technology for on-site glass recycling. Researchers explain that through this approach, it is possible to produce customized or technological products with lower energy consumption, lower carbon dioxide emissions into the atmosphere, and lower transportation costs.

Researchers explain that users will send waste into new machines and choose the new products they want to obtain. "This will mean a shift from centralized recycling concepts to distributed recycling concepts, in which people will play a crucial role."
Everglass is one of the 53 projects selected by the European Innovation Commission.

Source: Laser Net

関連のおすすめ
  • Scientists have made breakthrough progress in using laser to cool sound waves

    A group of researchers from the Max Planck Institute of Optoelectronics has made a significant breakthrough in using laser cooling to travel sound waves. This development brings us one step closer to the quantum ground state of sound in waveguides, which is of great significance for quantum communication systems and future quantum technology.By using laser cooling, scientists can significantly red...

    2024-01-22
    翻訳を見る
  • Particles have "fuzzy memory" in solid-state batteries

    When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.This discovery has improved the understanding of solid-state batteries, which are candidate...

    2024-02-18
    翻訳を見る
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    翻訳を見る
  • Stratasys Ltd. receives a $120 million investment from Fortissimo Capital

    It is reported that Stratasys Ltd. (NASDAQ: SSYS) announced on February 2nd that it has received a $120 million investment from Fortissimo Capital, an Israeli private equity firm. This transaction directly purchases 11.65 million newly issued shares at a price of $10.30 per share, representing a premium of 10.6% compared to the company's closing price on January 31, 2025. As of press time, it has ...

    02-05
    翻訳を見る
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    翻訳を見る