日本語

QBeam launches innovative window ablation laser system to achieve free space optical communication

143
2024-02-15 11:40:33
翻訳を見る

QBeam is a leader in developing breakthrough optical products and announced today that its handheld laser ablation equipment is fully launched for free space optical communication in indoor office locations. The qBeam window ablation laser allows for the installation of optical communication terminals indoors by treating windows that otherwise block the infrared beams of the terminals.

Commercial buildings use energy-saving windows to reduce the operating costs of HVAC systems. These windows include low radiation coatings that can block infrared wavelengths, thereby limiting the escape of heat to the outside. Unfortunately, the Low-E coating also excludes the possibility of operating optical communication equipment indoors.

The handheld device of qBeam uses a laser beam to form a small "opening" on the Low-E coating, allowing infrared energy to pass through with minimal attenuation. This has led to significant improvements in the transmission of free space optical communication.

The portable laser system includes a variable depth of focus function to accommodate most commercial windows and can create approximately 4 inches x 4 inches of "openings" without repositioning the device. Larger openings require multiple applications. This process is permanent and can be applied within a few minutes.

The window ablation laser equipment supplements qBeam's existing FSOC modem product line by being installed in more locations. The qBeam FSOC modem released in 2023 provides a low-cost fiber optic solution alternative for ground networks when paired with compatible optical terminals. In the past, free space optical devices were unable to obtain traction because traditional FSOC modems did not fully consider the impact of atmospheric turbulence.

The working mode of qBeam FSOC modems is different. It includes forward error correction function and fade out mode, which can provide end-to-end protection for transmitted data. Therefore, compared to traditional systems, qBeam FSOC modems support longer ranges and higher data rates, providing unparalleled stability, reliability, and performance.

The plug and play qBeam FSOC modem can seamlessly integrate with existing optical terminals to quickly provide these and other advantages to existing infrastructure. It is suitable for traditional Gigabit Ethernet networks and supports GigE and 2.5 GigE client connections through standard RJ-45 or SFP+interfaces. QBeam is actively seeking relationships with optical terminal manufacturers to enable customers to easily and quickly deploy more comprehensive FSOC solutions. QBeam plans to release optical terminals by the end of 2024.

"For a long time, optical communication has been impacted by untapped potential, posing various unsatisfactory choices for governments and commercial entities to best support their ground and ground to air communication needs," he said, referring to Eugene Ishinto, President and CEO of qBeam. "Our innovative FSOC modem and window ablation system unleashes this potential through eye-catching and easy-to-use products that can immediately provide value to our customers and change the landscape."

QBeam was founded in 2014 and is headquartered in Lisburg, Virginia. It is dedicated to developing optical/laser products as well as simulation and modeling software for communication links. The company designs and manufactures innovative free space optical modems, multispectral infrared cameras, laser etching/ablation systems, and optical ranging simulators. It also developed an Embed/Comm physical layer communication simulation software plugin.

Source: Laser Net

関連のおすすめ
  • The United States is expected to use "AI+lasers" to deal with space debris in the future

    Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deploye...

    2023-10-20
    翻訳を見る
  • Cannon-Brookes spotlights Singapore with SunCable solar

    Billionaire Mike Cannon-Brookes' plan to export clean energy from Australia to Singapore via a 4,200km undersea cable has gained new momentum after taking control of the stalled project.Cannon-Brookes' Grok Ventures has completed its acquisition of SunCable from the government and is advancing talks with authorities in Singapore and Indonesia, the investment firm said on Thursday. The revised plan...

    2023-09-08
    翻訳を見る
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    翻訳を見る
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    翻訳を見る
  • Researchers have developed a quantum cascade laser in Italy

    The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, ...

    2023-08-04
    翻訳を見る