日本語

Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

124
2024-03-02 11:59:05
翻訳を見る

Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LEDs, improve efficiency through photonic crystals and require designers to perform high-precision simulations at different scales.

In 2021, Ansys' acquisition of Zemax marked an important step in addressing the challenges of optical device design. This merger combines Zemax's OpticStudio with Ansys's integrated platform, which is renowned for analyzing light interactions greater than wavelength. This platform enables designers to conduct visual simulations from the nanoscale to the system level, ensuring the efficiency and accuracy of developing modern optical systems.

Ansys Lumerical simulates the interaction between light and wavelength scale structures by solving Maxwell's equations, which is a key function in designing efficient nanostructures on LEDs. Meanwhile, Ansys Speos provides system level visualization and validation, integrating human visual acuity into simulations. This is particularly important for applications such as car headlights and AR/VR head mounted devices, where understanding human perception can greatly reduce the need for expensive physical prototypes.

The integration of OpticStudio, Lumerical, and Speos on the Ansys platform represents a leap in optical design and simulation. Nowadays, design engineers can use multi physical fields and multi-scale simulation toolkits to develop optical products with unprecedented efficiency and accuracy. This progress demonstrates our continuous efforts to provide seamless and user-friendly interfaces to connect these complex solutions, enabling engineers to quickly bring innovative optical systems to the market.

The collaboration between Ansys and Zemax is backed by cutting-edge simulation technology, setting new standards for the design and modeling of modern optical devices. By implementing full spectrum simulation from nanostructures to system level applications, this platform not only improves the efficiency and performance of optical devices, but also drives innovation in fields that heavily rely on advanced optical technology.

Source: Laser Net

関連のおすすめ
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    翻訳を見る
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    翻訳を見る
  • Yangtze Welcomes 8th Overseas Production Site

    On August 8, local time, Jalisco, Mexico welcomed the grand opening of Yangtze Optics Mexico Cable S.A. de C.V., marking the eighth overseas production base of Yangtze Optical Fiber & Cable Co. ("Yangtze Fiber Optics") has successfully set up its eighth overseas production base in its 36-year development history, further advancing its internationalization strategy blueprint. Today, we are pr...

    2024-08-14
    翻訳を見る
  • Shanghai Optics and Machinery Institute has made new progress in laser welding of new high-temperature nickel based alloys

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Machinery has made new progress in laser welding of new structural materials for high-temperature molten salts. The research team used a high-power laser for the first time to achieve defect free welding of nick...

    2023-09-01
    翻訳を見る
  • Continuation of the Term of President and CEO of Jena Germany

    Recently, the supervisory board of Jenoptik, a leading German laser technology company, announced an important decision: to extend and confirm the term of Dr. Stefan Traeger as Chairman of the Executive Board, with a new term of three years starting from July 1, 2025, and the contract validity period correspondingly extended to June 30, 2028. Dr. Stefan Traeger has been serving as the President ...

    2024-09-06
    翻訳を見る