日本語

Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

177
2024-03-18 13:47:36
翻訳を見る

Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.

Yingfeilang stated that its data center's optical connectivity technology can achieve highly integrated solutions, combining multiple optical functions onto a single single chip. This technology is part of Infinira's flexible data center's optical brand ICE-D.

The official press release stated, "The ICE-D test chip has been launched and has been proven to reduce power consumption per bit by 75%, while also improving connection speed."

According to Infinira, this product reduces power consumption per bit by 75% and improves connection speed in AI driven interconnections. The company also mentioned that the optical components within the ICE-D data center are designed to support integration into various internal and campus data center optical solutions.

The company stated that it is using its experience in optical connectivity solutions to address the challenges of economically expanding connectivity within data centers, in order to support the bandwidth flooding brought about by artificial intelligence applications.

Infinira stated, "Our unique single-chip InP PIC technology puts us in an ideal position to develop innovative technologies to provide cost-effective, high-capacity data center connectivity solutions."

Source: Laser Net

関連のおすすめ
  • The largest ultra fast laser production base in the northwest has been completed and put into operation

    As a representative enterprise in the field of ultrafast lasers, Zhuolai Laser has always performed outstandingly in the market, not only possessing dual technologies of "ultrafast+ultra strong", but also covering a remarkable range of technical routes in China. In 2022, the company completed a financing of 200 million yuan.Recently, Zhuolai Laser announced to the public that its Xi'an subsidiary ...

    2024-04-28
    翻訳を見る
  • The Key Role of Laser Pointing Stability in the Application of Lithography Systems

    Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask...

    2024-07-02
    翻訳を見る
  • Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "...

    2023-10-14
    翻訳を見る
  • Focusing on the headquarters of Kuaidiqin Gen, a place of innovation and prosperity

    Have you ever imagined finding exquisitely designed and vibrant buildings in an industrial park? The headquarters of Deutschengen in Germany is such a place that combines creativity and practicality.Carefully planned and focused sustainable architecture combines design and functionality, showcasing the best appearance of industrial architecture and a vivid practice of its corporate spirit and valu...

    2024-04-28
    翻訳を見る
  • WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

    The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including...

    2023-10-10
    翻訳を見る