日本語

Scientists propose new methods to accelerate the commercialization of superlens technology

125
2024-03-29 14:51:52
翻訳を見る

Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.

Despite its potential, current technology requires tens of millions of Korean won to manufacture nail sized superlenses, which poses a challenge to commercialization. Fortunately, a recent breakthrough indicates that its production costs are expected to decrease by one thousandth in price.

A collaborative research team composed of Professor Junsuk Rho from the Department of Mechanical Engineering and the Department of Chemical Engineering at Pohang University of Science and Technology has proposed two innovative methods for large-scale production of superlenses and manufacturing them on large surfaces. Their research is published in the Review of Laser and Photonics.

Lithography is a process of manufacturing a superlens by printing patterns on a silicon wafer using light. Usually, the resolution of light is inversely proportional to its wavelength, which means that shorter wavelengths lead to higher resolution, allowing for the creation of finer and more detailed structures. In this study, the team chose deep ultraviolet lithography technology, which is a process that uses shorter wavelengths of ultraviolet light.
The research team recently achieved large-scale production of visible light region superlenses using deep ultraviolet lithography technology, which was published in the journal Nature Materials. However, due to the low efficiency of existing methods in the infrared region, challenges have arisen.

To address this limitation, the team developed a material with high refractive index and low infrared region loss. This material was integrated into the established large-scale production process, resulting in the successful manufacture of a relatively large infrared superlens with a diameter of 1 centimeter on an 8-inch wafer.

It is worth noting that this lens has an excellent numerical aperture of 0.53, highlighting its excellent light gathering ability and high resolution close to the diffraction limit. The cylindrical structure further ensures excellent performance without being affected by polarization, regardless of the direction of light vibration.

In the second method, the team employed nanoimprinting, a process that allows for the use of molds to print nanostructures. This process utilizes the knowledge of nanoimprinting technology accumulated through collaborative research with RIT.

This effort has been proven successful as the team managed to mass produce a 5-millimeter diameter superlens composed of approximately 100 million rectangular nanostructures on a 4-inch wafer. It is worth noting that this type of superlens exhibits impressive performance, with an aperture of 0.53. Its rectangular structure exhibits polarization dependence and can effectively respond to the direction of light vibration.

On the basis of this achievement, the team integrated a high-resolution imaging system to observe real samples such as onion skins, verifying the possibility of commercializing superlenses.

This study is of great significance as it overcomes the limitations of traditional individual production processes for superlenses. It not only helps to create optical devices with polarization dependence and independent characteristics, tailored for specific applications, but also reduces the production cost of superlenses by up to 1000 times.
Professor Junsuk Rho said, "We have achieved precise and rapid production of wafer level high-performance superlenses, reaching the centimeter level. Our goal is to accelerate the industrialization of superlenses and promote the advancement of efficient optical devices and optical technology through this research.".

Source: Laser Net

関連のおすすめ
  • Opton Laser commercializes ultra-high contrast third-order autocorrelators

    Recently, Opton Laser International, a supplier specializing in photonics, is currently distributing manufacturer UltraFast Innovations (UFI)'s ultra-high contrast third-order autocorrelator Tundra++. The new generation Tundra aims to characterize the temporal intensity distribution and quality of laser pulses with particularly high sensitivity.This is to avoid the harmful effects caused by the hi...

    2023-08-31
    翻訳を見る
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    翻訳を見る
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    翻訳を見る
  • Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

    The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;Based on over 20 years of experience in pulse laser technology.Shanghai, China, August 8, 2024- AMS, a leading global optical soluti...

    2024-08-09
    翻訳を見る
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    翻訳を見る