日本語

Three core processes of laser soldering support the development of PCB electronics industry

128
2024-04-15 16:43:52
翻訳を見る

In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its main soldering materials - tin wire, solder paste, and solder balls - in PCB electronic manufacturing.

01
Laser Tin Wire Welding for PCB Circuit Board Welding
Tin wire plays an important role in laser soldering process. After focusing the laser beam, it can quickly melt the tin wire, achieving reliable connection between components and PCB boards. This welding method not only reduces the thermal stress generated during the welding process, but also effectively improves the welding quality and reduces the welding defect rate.
Laser tin wire welding has the advantages of high precision and high efficiency, and is suitable for situations with high requirements for welding quality. By adjusting the laser power and focal length, precise welding of PCB boards with different materials and thicknesses can be achieved.

02
Laser solder paste welding for PCB circuit board welding
Solder paste is mainly used for soldering surface mount components. After coating an appropriate amount of solder paste on the PCB board, the components are heated by a laser soldering machine to melt the solder paste and penetrate into the gap between the components and the PCB board, forming a solid solder joint.
Solder paste welding has the characteristics of simple operation and fast welding speed, making it suitable for efficient welding on large-scale production lines. In addition, solder paste welding can also reduce production costs and improve welding quality.

03
Laser solder ball welding for PCB circuit board welding
Tin balls, as a new type of soldering material, have received widespread attention in the field of laser soldering in recent years. The laser beam quickly melts the solder balls and accurately drips them onto the solder joints, achieving the welding between the components and the PCB board.
Tin ball welding has the advantages of high welding accuracy and low heat impact, making it particularly suitable for high-end electronic products that require high welding quality, such as BGA chips, wafers, hard disk heads, camera modules, and optoelectronic products.

04
The Future Development of Laser Soldering Technology
In the field of PCB electronic manufacturing, the emergence of laser soldering technology, combined with perfect soldering materials such as tin wire, solder paste, and solder balls, has brought revolutionary changes to the entire electronics industry and injected a continuous stream of vitality. In the future, with the continuous development of technology, we believe that laser soldering technology will play a more important role in the electronics industry, bringing more convenience and surprises to our lives.

05
The advantages of laser soldering technology
The perfect combination of laser soldering technology and various soldering materials further improves the welding quality. Not only has it subverted traditional soldering methods, but it has also significantly reduced production costs and defect rates while improving welding efficiency and quality, laying a solid foundation for the sustainable development of the electronic manufacturing industry.

Soldering materials such as tin wire, solder paste, and solder balls, under the action of laser, can not only quickly melt and achieve perfect fusion with the parts to be welded, ensuring the strength and stability of the welded joint, but also avoiding adverse phenomena such as virtual soldering and cold soldering that may occur in traditional soldering. The high-speed characteristics of laser welding significantly improve production efficiency, providing strong support for the large-scale production of electronic products.

In addition, laser soldering technology also has high flexibility. By adjusting the laser power and focal length, precise welding of PCB boards with different materials and thicknesses can be achieved. This flexibility makes laser soldering technology more widely used in the field of PCB electronics, meeting the needs of different customers.

Source: Zichen Laser

関連のおすすめ
  • Laser chip manufacturer Shijia Photon will make a profit of 65 million yuan in 2024

    Shijia Photon disclosed its 2024 annual performance forecast on the evening of January 17th, expecting to achieve a revenue of 1.074 billion yuan in 2024, a year-on-year increase of 42.36%; Net profit attributable to the parent company was 65 million yuan, with a loss of 47.55 million yuan in the same period last year; Deducting non net profit is expected to be 48.1 million yuan, with a loss of 66...

    01-21
    翻訳を見る
  • Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

    Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute ...

    2023-11-17
    翻訳を見る
  • This innovation will significantly improve the sensitivity of gravitational wave detectors

    In 2017, the detection of gravitational waves generated by the merger of binary neutron stars marked a significant breakthrough in physics. These waves reveal important information about the universe, from the origin of short gamma ray bursts to the formation of heavy elements.However, capturing gravitational waves from the merged residue remains a challenge as these waves avoid the detection rang...

    2024-04-17
    翻訳を見る
  • German research institute develops a new nanosecond laser process

    Recently, the Fraunhofer Institute (HHI) has developed a technology for processing aluminum alloy materials using reactive gas assisted nanosecond lasers, which can be used to produce electronic box samples for spacecraft manufacturing. This development project is part of the NanoBLAST project, in close collaboration with thermal engineering company Azimut Space GmbH, aimed at manufacturing surfac...

    2024-09-10
    翻訳を見る
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    翻訳を見る