日本語

Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

177
2024-04-29 16:03:41
翻訳を見る

A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirectional matching transparent metamaterials, which can hide large objects in free space.

The research findings were published in the National Science Review under the title of "Omnidirectional Transformation Optical Devices with All Parameters". Dr. Yuan Gao from Zhejiang University was the first author, and Professor Yu Luo, Professor Chen Hongsheng, and Professor Ye Dexin were the corresponding authors.

In 2006, Professor Pendry from Imperial College London, UK, proposed transformation optics, which describes the correspondence between electromagnetic wave propagation paths and material composition parameters, providing a universal and powerful method for controlling electromagnetic waves.

In the past decade, transformation optics has developed rapidly, and various new optical devices have been designed through transformation optics, such as invisibility cloaks, electromagnetic illusion devices, and concentrators. However, the composition parameters of optical media transformation are anisotropic and often uneven or have singular values, making it difficult to achieve.

For example, the omnidirectional invisibility cloak achieved through experiments so far has always simplified the material parameters. Simplified design sacrifices impedance matching, thereby reducing the performance of transformation optical devices.

To address these issues, the research team designed a two-dimensional all parameter omnidirectional planar invisibility cloak based on linear transformation optics, which is composed of only two homogeneous materials. The composition parameters of the first material are anisotropic, with both zero and extreme values, and electromagnetic waves propagating along the optical direction have infinite phase velocities.

Design an ideal omnidirectional cloak in free space. (a) Stealth design based on linear transformation optical elements. (b) A schematic diagram of the actual cloak. (c) Simulate (I, II, III) and measure (IV, V, VI) stealth performance.

By using this material, electromagnetic waves can bypass the invisible region, achieving omnidirectional impedance matching and zero phase delay. The second material also has anisotropic composition parameters, which can achieve phase compensation under omnidirectional impedance matching, and electromagnetic waves propagating in the optical direction have sub cavity phase velocity.

In the experimental verification, researchers used these two materials with TM polarization wave full parameter composition parameters.
The first material is achieved using a subwavelength metal patch array with Fabry Perot resonance, while the second material is achieved using a structure composed of traditional I-type electric resonators and split ring resonators.

Finally, the researchers measured the magnetic field around the omnidirectional cloak composed of the first two materials under different angles of TM polarization wave incidence, and the results showed that it has excellent stealth performance.

This study presents for the first time a fully parametric omnidirectional invisibility cloak in free space, which can hide large objects under any incident light. The achieved invisibility cloak can be immediately used to suppress the scattering cross-section of targets in radar communication and bistable detection.

The method proposed in this study also has a profound impact on the practical application of other full parameter transformation optical devices.

Source: Physicist Organization Network

関連のおすすめ
  • Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

    Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the compre...

    2024-02-03
    翻訳を見る
  • A research team at City University of Hong Kong has developed a multispectral, ultra-low dose photoacoustic microscope system

    Optical resolution "photoacoustic microscope is a new biomedical imaging technology, which can be used in the research of cancer, diabetes, stroke and other diseases. However, insufficient sensitivity has always been a long-term obstacle to its wider application.According to Maims Consulting, a research team from City University of Hong Kong (CityU) has recently developed a multispectral, ultra-lo...

    2023-09-21
    翻訳を見る
  • Deep Photon Network Platform, Empowering Any Functional Photon Integrated Circuit

    The widespread application in the fields of optical communication, computing, and sensing continues to drive the growing demand for high-performance integrated photonic components. Recently, Ali Najjar Amiri of Kochi University in Türkiye and other scholars proposed a highly scalable and highly flexible deep photonic network platform, which is used to realize optical systems on chip with arbi...

    2024-03-11
    翻訳を見る
  • Breaking the limits of optical imaging by processing trillions of frames per second

    Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.The team located at the INRS É nergie Mat é riaux T é l é communications resea...

    2024-04-08
    翻訳を見る
  • Tesla Intelligent Robot Vacuum Laser AI200 has a maximum operating time of 130 minutes

    In most cases, devices that are part of so-called smart homes have become a part of our lives. These appliances have a significant impact on our comfort level and contribute to daily household chores, such as cleaning. There are many products in the market that have paved the way in this regard, but the amount we usually have to pay for them effectively prevents us from purchasing.Of course, we ca...

    2023-11-10
    翻訳を見る