日本語

Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

132
2024-06-06 14:46:49
翻訳を見る

It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was published in Materials Science and Engineering Technology.

 



Laser based powder bed melting can be combined with casting to form a composite manufacturing process. This is to simultaneously utilize the advantages of both processes. In order to investigate the challenges associated with the use of aluminum alloys, researchers first conducted experiments using two common independent processes, the alloy EN AC-42000. Place the EN AC-42000 alloy samples that have undergone different surface treatments into a sand mold, and then cast them onto the aluminum melt. The contact area between the partially melted insert and the casting material was examined using an optical microscope. The results indicate that the main challenges include binding issues caused by the presence of oxides and high porosity. The high porosity can be traced back to the increase in porosity of inserts during laser powder bed melting.

 


Figure 1: Composite casting aims to combine the advantages of laser powder melting and die casting.

 


Figure 2: a) Experimental method scheme. The cylindrical aluminum sample is completely cast in. b) The image of inserting the sample into the four tubes inside the sand mold for the casting process.

 


Figure 3: Overview of samples after cutting, grinding, and polishing.

 


Figure 4: Microscopic image of the sample: Visible contact surfaces and pores are depicted in areas 1 and 2. The enlarged area 2 attempts to capture evidence of metal fusion or non fusion.

The purpose of this study is to gain a preliminary understanding of the challenges faced in combining laser powder bed melt additive manufacturing with casting. The results indicate that the porosity of EN AC-42000 alloy significantly increases. The increase in porosity is a major issue in the feasibility of the process, and further research should be conducted on possible solutions to prevent a significant increase in porosity.

In addition to porosity, there is also a certain degree of material fusion between castings and inserts manufactured by laser powder bed melting. In terms of process feasibility, these results mean that the oxide layer needs to be thoroughly removed and prevented from re growing after removal. In further research, methods for removing the oxide layer and stabilizing this deoxygenation state should be explored to make them suitable for components manufactured by laser powder bed melting.

Paper link: https://doi.org/10.1002/mawe.202300403

Source: Yangtze River Delta Laser Alliance

関連のおすすめ
  • Professor Wu Dong's team at the University of Science and Technology of China created a "dancing microrobot" using femtosecond laser composite materials.

    It was learned from the University of Science and Technology of China that the team of Professor Wu Dong of the Micro and Nano Engineering Laboratory of the school proposed a femtosecond laser two-in-one multi-material processing strategy, manufactured a micromechanical joint composed of temperature-sensitive hydrogel and metal nanoparticles, and then developed a multi-joint humanoid micromachine ...

    2023-08-11
    翻訳を見る
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    翻訳を見る
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    翻訳を見る
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    翻訳を見る
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    翻訳を見る