日本語

The new generation of special optical fibers is suitable for the application of quantum technology

113
2024-08-02 14:35:47
翻訳を見る

Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.

The highly anticipated aspect of quantum technology is that it can enable people to solve complex logical problems and develop new drugs with unprecedented computing power. At the same time, quantum technology can also bring more secure communication to people by providing unbreakable encryption technology. However, due to the solid core of optical fibers, wired networks that transmit information globally today are not suitable for future quantum communication.

Bright light is transmitted through newly designed optical fibers
The wavelength of light transmitted through traditional optical fibers is determined by the loss of quartz glass. These wavelengths are incompatible with the operating wavelengths of single photon sources, quantum bits, and active optical components required for optical quantum technology. Therefore, researchers must develop support devices that are different from what is currently available in order to ensure their effectiveness in future quantum networks.

This time, researchers from the University of Bath analyzed the relevant challenges of quantum Internet from the perspective of optical fiber technology, and proposed a series of solutions to achieve robust, large-scale scalability of quantum networks, including optical fibers for long-distance communication and special optical fibers that allow quantum repeaters. The newly manufactured special optical fiber is different from standard telecommunications optical fiber in that it has a microstructure core composed of complex air pocket patterns distributed along the entire length of the fiber. These patterns enable people to manipulate the properties of light inside the fiber, create entangled photon pairs, change the color of photons, and even capture individual atoms inside the fiber.

The research team introduced that special optical fibers can achieve quantum computing at the node itself by acting as entangled single photon sources, quantum wavelength converters, low loss switches, or quantum memory containers. Meanwhile, special optical fibers can be directly integrated into the network, greatly extending the operational distance.

The new type of optical fiber can also generate more unique quantum states of light, which can be applied in quantum computing, precision sensing, and information encryption, laying the foundation for large-scale applications of quantum computers in the future.

Source: Network

関連のおすすめ
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    翻訳を見る
  • Changguang Huaxin's revenue in the first half of the year was 142 million yuan, and its net profit decreased by 117.97% year-on-year

    On August 30th, Changguang Huaxin released its results for the first half of 2023. In the first half of this year, the company achieved a revenue of 142 million yuan, a year-on-year decrease of 43.23%; Net profit attributable to shareholders of the listed company -10.6374 million yuan, a year-on-year decrease of 117.97%.Due to macroeconomic factors such as a slowdown in economic growth, market con...

    2023-08-31
    翻訳を見る
  • 85000W laser cutting machine emerged and led the world

    Recently, Pentium Laser and Shenzhen Chuangxin Laser launched the world's first 85000W laser cutting machine, once again breaking the record for the highest power in the cutting field.Zhang Qingmao, Director of the Laser Processing Committee of the Chinese Optical Society, Xu Xia, rotating CEO of Pentium Group, Cai Liang, Director of the Final Inspection Department of Pentium Laser Manufactu...

    2023-09-16
    翻訳を見る
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    翻訳を見る
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    翻訳を見る