日本語

Trends and Reflections on the Laser Industry in 2025

681
2025-01-02 16:19:01
翻訳を見る

In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.

In 2025, practitioners in the laser and manufacturing industries still face many challenges.
The turbulent international situation in Europe and America, as well as the threat of various geopolitical conflicts, will lead to supply chain restructuring, major changes in the automotive manufacturing industry, and a glimmer of hope for the semiconductor industry
With the increasingly fierce competition in the industry, words such as "internal competition", "reshuffling", and "cold winter" will continue to be heard throughout the year. Every enterprise in the laser industry chain is striving to explore new paths, striving to break through and protect themselves in the era of great change.

Looking back at 2024 and looking ahead to 2025, what industry trends are worth paying attention to?
According to the latest research data from Optech Consulting, it is expected that the global laser material processing equipment market will reach $23 billion by 2024.



Image source: Optech Consulting
From the chart, the market size has decreased by 1% to 5% compared to the historical high of $23.5 billion set in 2023.
Geographically speaking, only a few markets have shown growth this year, while demand in the European and American markets has declined, while the Chinese market has remained stable with no significant upward or downward trend.

From an application perspective, market growth is gradually shifting from macro processing to micro processing. Prior to this, the market demand for laser precision machining equipment had experienced a two-year slump, but this year the demand has rebounded. In contrast, the cutting equipment market has declined for the second consecutive year, while the growth rate of the laser welding market has slowed down due to the maturity of China's new energy vehicle market.

Based on existing information and overall trends, the market trend of the laser industry in 2024 is expected to continue until early 2025, with precision machining continuing to strengthen and the macro machining sector also expected to continue to decline.

In addition to laser processing, other fields are also emerging. Thanks to the rapid development of artificial intelligence, photonics is gradually moving towards the semiconductor field. When will it enter the PCB level or even chip level applications? The answer seems to be now.

It is reported that billions of dollars have been invested in companies that are driving photonics towards PCB and chip levels by 2024. For example, in October, Google Ventures invested $400 million in Lightmatter, with the ultimate goal of elevating photonics to the level of processors. Now it seems that the industry is actively embracing photon interconnect technology, aiming to break through the speed and bandwidth limitations of traditional electronic interconnects.

Beyond the aforementioned fields, laser fusion is also a frequently mentioned term this year. However, true commercialization is still some time away. Multiple rounds of investments were made in global nuclear fusion startups in 2024, but the amounts were mostly in the millions of dollars. These funds are sufficient to support the construction of other laser facilities, but they are far from enough for laser fusion testing facilities.
Although NIF has made good progress this year and is expected to achieve an output of 5.2MJ by 2024, it still faces many problems: which laser fusion process will achieve net gain, that is, the energy generated exceeds the energy required by the laser? What is the goal of mass production?

To address this, we first need a pump laser that is larger and more efficient than any product we currently have, and optical devices that can withstand long-term high-power, high-energy, and high-intensity operations. Germany is currently conducting research and development on the above-mentioned projects, preparing necessary components for laser fusion power plants, developing more efficient laser diodes, and efficient manufacturing technologies.

At the industrial level, TRUMPF, Jenoptik, Laserline, and AMS OSRAM are involved; At the research level, ILT and FBH are also involved.
Although the actual laser process for nuclear fusion has not yet been defined, lasers and optical devices used for nuclear fusion may soon contribute to the profits of their manufacturers.

In addition, laser communication, quantum technology, and the application of laser technology in the field of new energy are expected to see significant development and breakthroughs by 2025.

Source: Yangtze River Delta Laser Alliance

関連のおすすめ
  • Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Techn...

    2024-06-12
    翻訳を見る
  • By 2030, the global market size of medical laser fiber will reach 1.369 billion US dollars

    According to a recent report by Congic Business Intelligence, the global medical laser fiber market is expected to grow significantly at a compound annual growth rate of 6.9% from 2023 to 2030. This growth is attributed to the increasing popularity of minimally invasive surgery worldwide.The medical laser fiber market is expected to expand strongly, reaching $1.369 billion by 2030. The market is v...

    2023-10-27
    翻訳を見る
  • AEROTECH releases updated AUTOMATION1 motion control platform

    Aerotech is a global leader in precision motion control and automation, and every release has made the Automation1 motion control platform even stronger and more user-friendly. Version 2.5 brings TCP socket interface (test version), Automation1 MachineApps HMI development, new auxiliary module for motor settings, and improved machine settings for galvanometer laser scanning heads.Automation1 conti...

    2023-08-14
    翻訳を見る
  • E-22 uncertainty optical frequency divider

    The time/frequency unit is the most accurate among the seven basic units, so many measurement studies that pursue ultra-high accuracy and sensitivity will be transformed into frequency measurements to achieve higher measurement accuracy and sensitivity. For example, by measuring the relative changes in the ratio of different atomic transition frequencies, ultralight dark matter can be detected or ...

    2024-02-27
    翻訳を見る
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    翻訳を見る