한국어

Significant breakthrough in intelligent spectral environment perception research at Xi'an Institute of Optics and Fine Mechanics

83
2025-03-20 17:10:53
번역 보기

Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in the field of intelligent spectral environmental perception. Relevant research results have been published in the top journal in the field of environmental science, Environmental Science&Technology (Nature Index, 5-Year IF: 11.7), and have been selected as cover papers. The first author of the paper is Liu Jiacheng, and the corresponding authors are Yu Tao and Hu Bingliang. Xi'an Institute of Optics and Fine Mechanics is the first completion unit and communication unit. This is the first time that Xi'an Institute of Optics and Fine Mechanics has published an article in this journal, marking a new breakthrough in the research of intelligent spectral environment perception in the international academic field.

Spectroscopy is an important interdisciplinary field mainly involving physics and chemistry, which studies the interaction between 
electromagnetic waves and matter through spectroscopy. Detecting the absorption spectrum of water bodies can reflect the absorption characteristics of water molecules towards specific wavelengths of light, thereby quantitatively inverting water environmental quality parameters. The complex background interference of water bodies poses great challenges to high-precision quantitative inversion. Existing research mainly relies on data-driven machine learning models for quantitative inversion of water quality parameters, which is difficult to adapt to complex surface water scenarios with wide geographical distribution.

In response to the above challenges, the research team has introduced the Transformer architecture for spectral quantitative inversion of water quality parameters for the first time, and proposed the concept of Physicochemical Informed Learning to construct a quantitative inversion model for physical and chemical driven Transformers. This method embeds prior physical and chemical information into the spectral encoding process, and combines the global feature extraction capability of the Transformer architecture to improve the accuracy of complex surface water spectral quantitative inversion. The results show that this method exhibits excellent water quality parameter inversion ability in complex surface water scenarios with wide geographical distribution, providing a new theoretical basis and technical path for the application of intelligent spectroscopy technology in the environmental field.

 



Research methodology and process


Hu Bingliang and Yu Tao's team have conducted long-term research in high-resolution hyperspectral imaging remote sensing, fine spectral detection, and quantitative analysis. This research is an important achievement made by the team in benchmarking the country's efforts to promote the construction of a "Beautiful China". It is also highly recognized by the international academic community for the achievements in the field of intelligent spectral environment perception at Xi'an Institute of Optics and Fine Mechanics. It is also an important progress made by Xi'an Institute of Optics and Fine Mechanics in focusing on spectral imaging and fine spectral detection technology. The research work has been supported by the national key research and development plan, the Chinese Academy of Sciences pilot project (Class A) and other projects.

Source: opticsky

관련 추천
  • Historic Moment! The 100th TruLaser Cell Series 3D Five-Axis Laser Cutting Machine Successfully Rolls Off the Production Line in China

    Driven by the global trend of lightweighting in new energy vehicles (NEVs), TRUMPF has reached a significant milestone in Taicang, Jiangsu—the successful rollout of the 100th TruLaser Cell series 3D five-axis laser cutting machine. This achievement is more than just a numerical breakthrough; it symbolizes the deep integration of German technology with Chinese manufacturing and underscores TRUMPF's...

    03-14
    번역 보기
  • IPG Photonics has unveiled a new dual-beam laser with single-mode core power at the Novi Battery Show in Michigan

    IPG Photonics Corporation, a global leader in fiber laser technology, will highlight new and innovative laser solutions at the Battery Show from September 12 to 14, 2023 in Novi, Michigan, USA.The IPG booth will include industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding speedTo...

    2023-09-12
    번역 보기
  • Accurate measurement of neptunium ionization potential using new laser technology

    Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy te...

    2024-05-11
    번역 보기
  • Polish and Taiwan, China scientists are committed to new 3D printing dental implants

    Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants."The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide...

    2024-04-17
    번역 보기
  • Breakthrough in optical quantum simulation using long-lived polariton droplets

    Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and rec...

    2024-03-27
    번역 보기