한국어

Unsupervised physical neural network empowers stacked imaging denoising algorithm

200
2025-03-25 15:23:55
번역 보기

In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engineering under the title of "Noise robust photography using unsupervised natural network".
Its core innovations and achievements are as follows:

1. Core issues and challenges
Stacked imaging uses diffraction patterns to invert the complex amplitude distribution of objects, but faces challenges in the following scenarios:
Complex noise environment: Poisson noise (signal-to-noise ratio 24.64dB) under low light conditions and mixed noise caused by random high-energy particles can lead to the failure of traditional algorithms
Dynamic bandwidth imaging: Non monochromatic light sources make non target wavelengths a new frequency domain noise source
Hardware limitations: Traditional iterative algorithms are slow and difficult to achieve fast imaging.

2. Method innovation
Propose a dual driven framework of "physical model+deep learning"
Data processing architecture: Zero padding preprocessing (e.g. 512 → 612 pixels) and four component output (amplitude/phase x object/probe) are used to improve axial resolution
Network topology optimization: Customize U-net architecture (with only 2.5 million parameters) to achieve four-dimensional parameter joint optimization, and extend the dynamic range of the "Conv2d tanh" phase layer to 2 π
Anti noise loss function: pioneering a dual loss mechanism (β=0.85-0.95) to balance overexposed areas (γ=1 → 0.1 gradient) and probe structured constraints, resulting in a 5-fold decrease in loss function

3. Experimental verification
Verify performance through 600 sets of tests:
Noise robustness: Under mixed noise (SNR 30dB), the SSIM value reaches 0.92 ± 0.03, which is about 14 times higher than ePIE
Speed advantage: The single convergence time is 729 seconds, which is 47.8% and 31.9% faster than AD and ePIE, respectively
Wide spectral adaptability: effectively separates ± 5nm noise components in the 405nm band, achieving a resolution of 57 line pairs/mm

4. Application prospects
Extreme Ultraviolet EUV Imaging: The method has been adapted to the Fresnel propagation model and can be extended to a wavelength of 13.5nm
Low dose dynamic monitoring: Effective suppression of readout noise under 300 μ s short exposure conditions (NPS=0.12)
Multi parameter joint calibration: achieving joint calibration along the axis (zPIE) and oblique incidence (aPIE) by adding output channels [35-36]
This study provides a breakthrough in both computer principles and experimental models for coherent imaging of new light sources (X-ray/EUV) and extreme operating conditions (low temperature/irradiation).


Figure 1. ProPtyNet algorithm details. (a) ProPtyNet network flowchart. (b) Details of U-net network architecture. (c) Data preprocessing and post-processing methods.


Figure 2. Simulation reconstruction results. (a) The true amplitude and phase of objects and probes. (b) The reconstruction results of ProPtyNet, ePIE, rPIE, and AD algorithms under Poisson noise, Gaussian noise, and mixed noise.


Figure 3. Experimental results. (a) The reconstruction results of sample amplitude information under different noise environments. (b) Comparison of amplitude cross-sections in the underlined section. (c) Comparison of loss functions in the iterative process.


Figure 4. Reconstruction results under broad-spectrum illumination (a) Experimental illumination light spectrum. (b) Simulation and experimental results.

Source: opticsky

관련 추천
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    번역 보기
  • Progress has been made in the corrosion mechanism of alkali aluminum phosphate glass at Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made new progress in the corrosion mechanism of alkali aluminophosphate glass. The research findings were published in The Journal of Physical Chemistry C under the title "Formation Mechanism of Crystal Phase during Corrosion ...

    2024-07-10
    번역 보기
  • Using laser controlled filaments in vanadium dioxide to enhance neural morphology calculations

    In a new "Progress in Science" study, scientists from the University of Science and Technology of China have developed a dynamic network structure for neural morphology calculations using laser controlled conductive wires.Neuromorphic computing is an emerging research field that draws inspiration from the human brain to create efficient and intelligent computer systems. The core of neuromorphic co...

    2023-10-13
    번역 보기
  • The influence of laser beam drift on SLM thin-walled TC11 specimens at high scanning speed

    AbstractDue to the width of the laser melt pool and the sintering effect on the surrounding powder, the experimental size of the selective laser melting (SLM) sample will be larger than the design size, which will greatly affect the dimensional accuracy and surface quality of the thin-walled sample. In order to obtain SLM thin-walled TC11 specimens with precise dimensions, an orthogonal experiment...

    02-24
    번역 보기
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    번역 보기