한국어

The Linac Coherent Light Source II X-ray Laser in the United States has completed over a decade of upgrading and emitted the first X-ray with a record breaking brightness

97
2023-09-20 14:21:32
번역 보기

According to reports, the Linac Coherent Light Source II (LCLS-II) X-ray laser at the Stanford SLAC National Accelerator Laboratory in the United States has just completed an upgrade that took more than a decade. After a facelift, it has become the world's brightest X-ray facility and emitted the first record breaking X-ray, allowing researchers to record the behavior of atoms and molecules in biochemical reactions such as photosynthesis with unparalleled detail.

LCLS - II generates X-rays through a complex process. Firstly, researchers use ultraviolet lasers to separate electrons from copper plates, and then use strong microwave pulses to accelerate the electrons, which then pass through a "maze" of thousands of magnets. During this process, these electrons will oscillate back and forth and emit X-rays in a predictable and controllable manner. Researchers can image the internal structure of objects by guiding these X-ray pulses onto them.

The brightness of X-rays produced by LCLS - II is 1 trillion times that of X-rays used in the medical field, and 10000 times that of X-rays produced by its predecessor, LCLS.

Mike Dunn of SLAC explained that the brightness of X-rays has been improved in part because they have refurbished a 3-kilometer long metal tube, where electrons pass through the tube with a niobium lining. When cooled to around -271 ℃, niobium can withstand unprecedented high-energy electrons.

Nadia Zazeping from Le Chateau University in Australia pointed out that LCLS - II allows researchers to observe in unprecedented detail how biochemical processes occur at the atomic scale, making it possible to create "molecular movies" of biological processes such as mammalian visual imaging, photosynthesis, drug binding, and gene regulation.

Dunn also stated that LCLS - II can generate a large amount of bright X-rays in an extremely short period of time, allowing researchers to see what is happening inside the material, such as materials used in artificial photosynthetic devices or next-generation semiconductors, superconductors, etc. LCLS-II is a widely used research tool, just like a powerful microscope, which can observe all the details from quantum materials to biological systems, from catalytic chemistry to atomic physics.

Source: Science and Technology Daily

관련 추천
  • Solar cell laser processing deserves attention

    Laser processing is a relatively emerging non-contact processing method that utilizes the high energy of a beam of light to interact with materials and instantly vaporize or change their properties to achieve the expected manufacturing effect. It has gradually been promoted and applied in China in the past 20 years. Due to the different types, pulse widths, and wavelengths of laser generators, the...

    2023-10-31
    번역 보기
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    번역 보기
  • First time! Significant progress has been made in low repetition rate fully polarization maintaining nine cavity fiber lasers

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, reported for the first time a low repetition frequency full polarization maintaining 9-shaped cavity fiber laser at 915 nm. The relevant research results were published in Optics Express under the title "Low repetition rate 915 nm ...

    2024-05-07
    번역 보기
  • Molecular orientation is key: a new perspective on revealing electronic behavior using two-photon emission spectroscopy

    Organic electronics has aroused great interest in academia and industry due to its potential applications in OLEDs and organic solar cells, with advantages such as lightweight design, flexibility, and cost-effectiveness. These devices are made by depositing organic molecular thin films onto a substrate that serves as electrodes and exerting their effects by controlling electron transfer between th...

    2024-03-19
    번역 보기
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    번역 보기