한국어

What are the "unique secrets" of each family in terms of breaking the game and high reaction materials?

185
2023-11-06 14:44:36
번역 보기

Laser is considered a sharp sword that cuts iron like mud, but even sharper swords can have tricky moments. For example, in certain scenarios, there are materials with higher reflectivity, such as silver, copper, etc., known as "high reflection materials". High reflective materials have a low absorption rate for lasers, making them difficult to process and potentially causing equipment failure or even damage. For many years, it has been an important threshold for the laser cutting industry to try to overcome.

In addition to low absorption, when the high reflection material is not penetrated, it may cause higher power return light to return to the interior of the laser, damaging the laser. Therefore, traditionally speaking, laser cutting machines are both cautious and cautious in processing high reflective materials.

However, high reflective materials are a large group with extremely wide market applications. Whoever can conquer high reflective materials first can gain a foothold in the cruel market. Driven by market demand, some laser companies have gradually explored ways to break through high resistance barriers in recent years to meet diversified processing needs. Here are some ways for companies to break the situation:

01 Blue laser
The laser emitted by CO2 laser is in the infrared band (usually 10.6um), which performs well in many industrial applications. However, it is not ideal for high anti metal processing in special bands. So one possible approach is to bypass this high reflectivity band and replace it with a shorter wavelength blue laser (usually in the range of 400-500nm). Using blue light laser processing can not only improve the absorption rate, but also improve the splashing problem caused by infrared laser processing.

As a rising star in the blue laser industry, compared to mature infrared and green lasers, it is at most considered a little brother. In September 2020, the Guangdong Guangdong Guangdong Hong Kong Macao Greater Bay Area Hard Technology Innovation Research Institute (referred to as the "Hard Science Institute") launched the 500W series semiconductor blue laser, and later launched the 1000W series. This series of products is mainly used for welding, cladding, 3D printing, etc. of high reflective materials, which not only fills the domestic gap in this field, but also holds a leading position in technology worldwide.

Lithium ion battery welding, electronic component processing, and other scenarios require the processing of copper, a common high reaction material. After testing by the Institute of Hard Science, the power required to use a conventional infrared laser is about 4000 watts, while a blue laser only needs 400-800 watts to achieve processing. At the same time, due to the high absorption rate of blue light by copper, the process window is greatly increased, and the welding effect can be finely adjusted through parameter control to achieve "splash free welding". In addition, blue light welding of copper metal also has significant advantages in speed, at least 8 times faster than infrared laser welding.

02 Optimize fiber optic output head
In fiber laser machines, there are also thorny high reflection issues. In order to solve this problem, Ruike Laser chose to start with the laser head.

In principle, the return laser caused by high reflectivity materials is first and foremost affected by the output fiber optic cable head. Returning lasers can easily cause heat or even damage to the output optical cable. In order to ensure the safety of the output optical cable, Ruike Laser adopts a new QBH fiber output head and adds a primary return light stripping device on top of the original one. This highly reflective design can strip most of the return laser in the first time, combined with a water-cooled heat dissipation design to reduce the thermal impact on the output head of the optical cable.

In order to verify the performance of the new fiber output head, a high reflection test was conducted on the RFL-A1500D laser equipped with this output head. The overall testing approach was to simulate the user's usage environment, even exceeding the actual working conditions. After a rigorous welding test at the focal point, 90 ° perpendicular to the surface of red copper, although the surface of red copper has always been in a mirror state and a continuous stream of laser returns to the fiber output head, the core device has remained at normal operating temperature and is not significantly affected by the return light.

In addition, there are also ideas such as using swing welding heads and composite welding heads to avoid high reaction problems. With the popularization and application of lasers, they have emerged in various industrial manufacturing fields such as material processing, communication, information processing, medical beauty, scientific research and military. However, homogenized competition is becoming increasingly fierce, and exploring new ideas and opening up the new blue ocean will become the future development trend. As high reflective materials are "conquered" by lasers, this will bring new growth points to the laser processing industry.

Source: OFweek

관련 추천
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    번역 보기
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    번역 보기
  • Multiple international laser companies continue to increase investment in the Chinese market

    In early spring of 2025, China's laser industry once again attracted the attention of global laser giants, ushering in a new wave of international investment boom.After several global laser giants accelerated their layout in China in 2024, in February 2025, Carl Zeiss from Germany and Bystronic from Switzerland, two global giants in the optical and laser fields, also announced significant expansio...

    02-15
    번역 보기
  • Global manufacturer JQ Laser launches a new fully automatic pipe laser cutting machine equipped with a fully automatic feeding device

    JQ LASER, a global manufacturer specializing in laser cutting machines, has launched a new fully automatic pipeline laser cutting machine model T120A.According to JQ LASER's report on the 16th, the body of this new product adopts a vertical rather than horizontal design, reducing the machining center and improving stability.In the past, traditional double chuck pipe cutting machines had a fixed fr...

    2023-10-18
    번역 보기
  • Magdalena Ridge expands the capacity of optical interferometers

    The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple...

    2024-01-05
    번역 보기