한국어

Optical Drive Magnetic Control: A Breakthrough in Memory Technology

97
2024-01-06 14:21:21
번역 보기

A recent study conducted by the Hebrew University suggests an undiscovered relationship between magnetism and light. This discovery may pave the way for extremely fast optical storage technology and creative optical magnetic sensor technology.

It is expected that this discovery will completely change the way equipment is manufactured and data is stored in a range of fields.

Amir Capua, Professor and Head of the Spintronics Laboratory at the Institute of Applied Physics and Electrical Engineering at the Hebrew University of Jerusalem, reported on significant developments in the field of optomagnetic interactions. The team's surprising discovery demonstrated the process of manipulating solid magnetic states using optical laser beams, providing practical significance for a range of industries.

The discovery of neglected photomagnetic components, which are often overlooked due to the slower reaction of magnets compared to light radiation, contradicts recognized knowledge. The team's research has revealed a new theory: the ability of rapidly oscillating light wave magnetic components to manipulate magnets redefines fundamental physical interactions.

It is interesting that people have found a simple mathematical relationship between the amplitude, frequency, and energy absorption of magnetic materials to characterize the strength of interactions.

This discovery combines concepts from two scientific disciplines that previously had little in common and were closely related to the field of quantum technology. We arrived at this understanding by using principles that have been established in the quantum computing and quantum optics communities, but are less important in the spintronics and magnetism communities.

When magnetic materials and radiation are in a perfect equilibrium state, their interaction is recognized. However, so far, the situation involving radiation and imbalanced magnetic materials has only been described very briefly.

The fundamental principles of quantum computing and quantum optics were discovered in this non-equilibrium field. Using the concepts of quantum physics, we studied this non-equilibrium state in magnetic materials and demonstrated evidence of the fundamental idea that magnets can react to light at a short time scale. In addition, this kind of communication has been proven to be very meaningful and effective.

In addition, the group has also developed a unique sensor that can combine this discovery to identify the magnetic composition of light. Compared to traditional sensors, this innovative design provides adaptability and integration for a wide range of applications, which may alter sensor and circuit design to achieve different uses for light.

Mr. Benjamin Assouline, a doctoral student at the Spintronics Laboratory, conducted this study, which is crucial for this discovery. Recognizing the potential significance of their findings, the team has submitted multiple related patent applications.

The study was funded by the Israel Science Foundation, the Peter Broyd Center for Innovation Engineering and Computer Science, and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem.

Source: Laser Net

관련 추천
  • ALPD laser projection technology enters the Middle East market

    With the continuous growth of user numbers and usage duration, the quality and reliability of the ALPD laser projection solution independently developed by the global laser display leader Guangfeng Technology (688007. SH) have been increasingly recognized by more and more users.It is reported that VOX Cinemas, a well-known cinema line in the Middle East, has also joined the ALPD laser projection s...

    2024-08-07
    번역 보기
  • Stable lasers developed with mixed materials focus on autonomous vehicle, etc

    Researchers printed microscale lenses directly onto optical fibers, allowing them to tightly combine the fibers and laser crystals into a single laser oscillator.Scientists have used 3D printing polymers in new micro optical technology, which can reduce the size of lasers and be used in various new applications, including the laser radar system for autonomous vehicle technology and cancer treatmen...

    2024-01-22
    번역 보기
  • Xunlei Laser 20000W Large Format Laser Cutting Machine Winning the Bid for YD Company, a Famous Enterprise in the Steel Structure Industry

    Recently, the Xunlei Laser HI series 20000W large format laser cutting machine won the bid of YD Company, a well-known steel structure company, to help YD steel structure improve quality, efficiency, and green transformation!Established in 2009, YD Steel Structure is a large-scale specialized steel formwork enterprise that has established deep business partnerships with leading construction indust...

    2023-11-06
    번역 보기
  • Scientists simulate the conditions that allow photons to collide with photons by using lasers

    As far as quantum physics is concerned, one of the most striking predictions is that matter can be produced entirely from light (i.e., photons). Pulsars are an example of an object capable of achieving this feat.In a recent study reported in the journal Physical Review Letters, a research team led by scientists at Osaka University simulated the conditions that allow photons to collide with photons...

    2023-08-11
    번역 보기
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    번역 보기