한국어

Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

266
2024-01-09 14:20:23
번역 보기

Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.

This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals into a single laser oscillator. To maintain stability, the resulting hybrid laser produces a consistent output of over 20 mW at 1063.4 nm, reaching a peak of 37 mW. The uniqueness of this laser lies in its combination of the compactness, durability, and cost-effectiveness of fiber lasers, as well as the multifunctional characteristics of crystal based solid-state lasers, including various powers and colors. This research represents significant progress in creating affordable, compact and reliable lasers, especially for the lidar system in autonomous vehicle.

"By using 3D printing to manufacture high-quality micro optical devices directly on glass fibers used inside the laser, we have significantly reduced the size of the laser," said Simon Angstenberger, head of the research team at the Fourth Institute of Physics at the University of Stuttgart. This is the first implementation of this 3D printed optical device in real-world lasers, highlighting their high damage threshold and stability.

The Fourth Institute of Physics at the University of Stuttgart has been actively involved in promoting the development of 3D printing micro optical technology, especially in direct printing onto optical fibers. Using the two-photon aggregation 3D printing method, researchers have achieved the creation of high-precision miniaturized optical devices and introduced new features such as free-form surface optical devices and complex lens systems.

In this study, a Nanoscribe 3D printer was used to manufacture a lens with a diameter of 0.25 millimeters and a height of 80 micrometers directly on a size matched fiber through two-photon polymerization. This process involves designing optical components using commercial software, inserting optical fibers into a 3D printer, and performing complex structure printing at the end of the fiber. The accuracy of aligning printing with fibers and ensuring the accuracy of the printing process are key aspects of this meticulous process.

After printing, the researchers assembled the laser and its cavity, choosing fibers instead of traditional mirrors. This method produces a hybrid fiber crystal laser, where the printed lens focuses and collects light entering and exiting the laser crystal. Then fix the fiber optic cable on the bracket to enhance system stability and reduce sensitivity to air turbulence, thus forming a compact 5 x 5 cm2 laser system.

Within a few hours, continuous monitoring of laser power was conducted to confirm that the printed optical components did not deteriorate or have any adverse effects on the long-term performance of the laser. The scanning electron microscope images of the optical components used in the laser cavity show no visible damage. Researchers are currently focused on optimizing the efficiency of printed optical devices, exploring larger fibers and different lens designs to improve output power and customized options for specific applications.

"So far, 3D printed optical devices have been mainly used for low-power applications such as endoscopy," Angstenberger said. For example, the ability to use them for high-power applications may be useful for lithography and laser marking. We demonstrate that these 3D micro optical devices printed on fibers can be used to focus a large amount of light onto a single point, which is very useful for medical applications.

During an interview with the 3D printing industry, Philipp Kohlwes, head of L-PBF at Fraunhofer IAPT, shared the institute's research on beam shaping to improve the stability and productivity of metal 3D printing. The focus of this study is to adjust the laser profile to optimize the energy input of the molten pool in the laser powder bed melting, and to solve the problems caused by traditional Gaussian profiles. Beam shaping is crucial for laser contour adjustment, ensuring a uniform temperature distribution. This technology has advantages such as enhanced microstructure control, potential cost savings, and up to 2.5 times printing speed, which can help improve productivity.

Last January, 3DM Digital Manufacturing launched a technology that allows users to customize their selective laser sintering 3D printing lasers for specific materials or applications. Using quantum cascade lasers, the company's proprietary lasers can provide adjustable wavelengths, faster laser absorption, and high surface finish. With its application in polymer manufacturing, this scalable technology aims to expand the market share of industrial 3D printing.

Source: Laser Net

관련 추천
  • Kearns Launches 3-Axis Controlled UV Laser Marking Machine to the UK Market

    Recently, Keyence announced that it has delivered the MD-U series of 3-axis controlled UV laser marking machines to its UK customers. This product technology utilizes ultraviolet lasers with high absorption rates to perform cold labeling on various materials - a process that can be carried out under minimum thermal stress.UV laser is generated by passing a standard wavelength laser (1064nm) throug...

    2023-10-09
    번역 보기
  • Multiple international laser companies continue to increase investment in the Chinese market

    In early spring of 2025, China's laser industry once again attracted the attention of global laser giants, ushering in a new wave of international investment boom.After several global laser giants accelerated their layout in China in 2024, in February 2025, Carl Zeiss from Germany and Bystronic from Switzerland, two global giants in the optical and laser fields, also announced significant expansio...

    02-15
    번역 보기
  • Researchers have created the first organic semiconductor laser to operate without the need for a separate light source

    OLED is located at the top and is formed by an organic layer between the contacts. Apply voltage to it, inject charge and generate light, which in turn excites organic laser. Organic lasers contain a grating that can generate feedback and diffract some of the laser out of the structure.Organic laserResearchers have created the first organic semiconductor laser to operate without the need for a sep...

    2023-11-29
    번역 보기
  • Coherent and Faraday sign a partnership to expand the manufacturing scale of high-temperature superconducting (HTS) tapes

    Recently, American photonics giant Coherent and Japan's Faraday 1867 Holdings signed a Letter of Intent (LOI), with the goal of expanding the manufacturing scale of high-temperature superconducting (HTS) tapes to be widely used in large-scale deployment of nuclear fusion reactors, while also promoting the transformation of green energy. Coherent's excimer laser is expected to be more widely used i...

    2023-10-12
    번역 보기
  • Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

    Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional ma...

    2024-02-23
    번역 보기