한국어

Researchers have discovered new multiphoton effects in quantum interference of light

136
2024-01-24 11:44:07
번역 보기

An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research.

"We have demonstrated through experiments that the interference effect between thermal light and parametric single photons can also lead to quantum interference with the background field. For this reason, the background cannot be simply ignored and subtracted from the calculation, as has been the case so far," said Professor Michael Kues, Director of the Institute of Photonics at Leibniz University in Hanover and member of the board of directors of the Phoenix D Excellence Cluster.

The leading scientist is doctoral student Anahita Khodadad Kashi, who is engaged in research on photon quantum information processing at the Institute of Photonics. She studied how the visibility of the so-called Hong Ou Mandel effect is affected by multiphoton pollution.

"Through our experiment, we have overturned the previously valid assumption that the multiphoton component only damages visibility and can therefore be subtracted from the calculation," said Khodadad Kashi. We have discovered a new fundamental feature that has not been considered in previous calculations. Our newly developed model can predict quantum interference, and we can measure this effect in experiments.

Scientists discovered their findings while conducting experiments in the laser laboratory. When they initially followed the original calculation method, they obtained negative results. "But the result is physically impossible," said Khodadad Kashi. The team started troubleshooting the experimental setup and computational model together.

"When the experimental results deviate significantly from expectations, scientists begin to question previous hypotheses and seek new explanations," Kuss said.

They jointly developed a new thermal field quantum interference theory, which uses parameterized single photons. Lucia Caspani, a quantum researcher at Strathclyde University in Glasgow, was the first to test this method. Next, Khodadad Kashi presented her theory and experimental results at an international conference, including the Photonics West held in San Francisco. There, she discussed her model with other scientists and obtained confirmation of her results.

Through new theories and experimental verification, Kues's team has made significant contributions to a better understanding of quantum phenomena. "These findings may be important for quantum key distribution, which is necessary for future secure communication, especially how to explain quantum interference effects to generate keys," said Khodadad Kashi.

However, many questions remain unanswered, Kues said. There is little research on the multiphoton effect, so a lot of work still needs to be done.

Source: Laser Net

관련 추천
  • WEC acquires precision laser cutting giant Laser Profiles Ltd

    Recently, WEC Group, a leading engineering and manufacturing company in the UK, announced that it has completed the acquisition of Laser Profiles Ltd, a precision laser cutting leader in Bournemouth. For over 40 years, WEC Group has been providing manufacturing, laser cutting, precision machining, waterjet cutting, powder coating, and CCTV installation solutions.The company stated that the acqui...

    2024-08-19
    번역 보기
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    번역 보기
  • Progress has been made in the research of phase modulation of terahertz programmable metasurfaces based on free carrier plasmonic dispersion effect

    Recently, the team of Situ Guohai and Guo Jinying from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the School of Microelectronics at Shanghai University collaborated to propose a terahertz phase controlled programmable metasurface design scheme based on free carrier plasma dispersion effect. The rela...

    2024-07-26
    번역 보기
  • Yueming Laser achieves a comprehensive product matrix of "laser+vision+automation+robots"

    Automotive electronics refers to the general term for all electronic devices and components used in automotive products, mainly divided into two major sections: body electronic control systems and on-board electronic devices.Among them, the body electronic control system is mainly composed of engine control system, auto drive system, chassis control system, etc., which is mainly responsible ...

    2023-09-14
    번역 보기
  • Toronto research has discovered 21 new sources of organic solid-state lasers

    Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new...

    2024-05-22
    번역 보기