한국어

Transforming solid-state single photon sources using multifunctional metalenses

161
2024-02-26 14:07:35
번역 보기

Quantum photonics is one of the important research directions in the quantum field, which utilizes the unique properties of light at the quantum level. The core of this field is the deterministic single photon source, which sequentially emits individual photons through spontaneous emission and is the cornerstone of quantum communication, computing, and secure encryption. However, under environmental conditions, the interaction between light and solid-state single photon emitters (SPE, such as quantum dots, diamond nitrogen vacancy color centers, defects in two-dimensional materials) is very weak and difficult to control. 

Therefore, the resulting single photon source has many problems, such as low collection efficiency, lack of directionality, and poor polarization/phase characteristics. To create complex quantum optical states and fully utilize the multiple degrees of freedom of a single photon (such as polarization and orbital angular momentum), it is necessary to construct a complex optical system composed of a series of discrete components (such as polarizers, wave plates, lenses, spatial light modulators, etc.). This method is inherently unfriendly due to its large configuration, difficult alignment, instability, high loss, and limited functionality.

Schematic diagram of multi-dimensional manipulation of hBN quantum emission using multifunctional metalenses


Design and characterization of polarization beam splitting metalenses
Optical metasurfaces are extremely thin nanoantennas arranged in carefully designed patterns, with unprecedented potential in manipulating all properties of classical and non classical light, providing a unique and promising platform for quantum nanophotonics. Especially, optical metasurfaces provide a new platform for generating and manipulating quantum states of photons, and offer new methods for controlling quantum light in integrated quantum photon devices.

It is reported that a joint research team led by Dr. Chi Li and Dr. Haoran Ren from Monash University, Professor Junsuk Rho from Pohang University of Science and Technology, and Professor Igor Aharonovich from Sydney University of Science and Technology has developed a new type of multifunctional metalenses, redefining the control of SPE quantum emission in hexagonal boron nitride (hBN) at room temperature. This research achievement showcases the rapid development of quantum photonics and has been published in the eLight journal under the title "Arrarly structured quantum emission with multifunctional metals".

This designed superlens can simultaneously map quantum emissions from superbright defects in hBN and imprint any wavefront onto the orthogonal polarization state of the light source, while shaping directionality, polarization, and orbital angular momentum (OAM). Therefore, this hybrid quantum superlattice lens system can simultaneously manipulate multiple degrees of freedom of the quantum light source. In its design, researchers used low loss hydrogenated amorphous silicon as the material for constructing the metalens unit. The extinction coefficient of this material in the hBN SPE emission spectrum can be ignored, thus achieving a collection efficiency of up to 0.3. Using this design, researchers created three different polarization separation superlenses and measured them using SPE to verify their ability to simultaneously control the directionality and polarization of single photon emission. In addition, researchers have also implemented more complex superlenses that can encode different helical phase wavefronts (OAM modes) in addition to directionality and polarization.

This study demonstrates the ability of superlenses to manipulate the quantum emission of hBN defects, allowing arbitrary wavefronts to be imprinted onto orthogonal polarization states. The multifunctionality of metalenses provides an important foundation for achieving advanced quantum computing, secure communication, and enhanced quantum sensing. Researchers believe that this quantum metasurface has the excellent ability to independently and synchronously control multiple degrees of freedom of photons, and will rapidly develop as a unique enabling platform for generating, routing, and manipulating quantum optical states.

Despite the pioneering nature of this study, the multifunctional metalens used to manipulate single photon emission from hBN SPE remains an external component, i.e. separate from the photon source. By adding transparent spacers, hBN SPE can be directly integrated into the superlens, but adjusting the device architecture and arrangement method is not an easy task and further research is needed. In addition, there is still room for development of integrated quantum superlattice surface chips that can simultaneously generate photon states and engage in high-dimensional quantum entanglement. In addition, the static properties of quantum metasurfaces that have been demonstrated so far severely limit their functional range, thus requiring the development of spatiotemporal quantum metasurfaces to provide new research avenues and breakthroughs for planar quantum photonics.

Source: China Optical Journal Network

관련 추천
  • Heavyweight Natuer: New progress in the efficiency of perovskite battery modules! Professor Zhang Xiaohong from Suzhou University, an alliance unit, issued a document

    Recently, Professor Zhang Xiaohong and Professor Peng Jun from the Functional Nanomaterials and Soft Materials Research Institute (FUNSOM) of Suzhou University, along with Professor Mohammad Khaja Nazeeruddin, Professor Paul J. Dyson, Professor Zhaofu Fei, and Professor Ding Yong from North China Electric Power University, collaborated to publish their research findings on Dopant additive synergy ...

    2024-04-19
    번역 보기
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    번역 보기
  • Researchers have captured the strange behavior of laser induced gold

    A new study conducted by the US Department of Energy's SLAC National Accelerator Laboratory has revealed the strange behavior of gold when impacted by high-energy laser pulses.When certain materials are subjected to strong laser excitation, they will quickly disintegrate. But gold is exactly the opposite: it becomes more resilient and resilient. This is because the way gold atoms vibrate together ...

    2024-02-17
    번역 보기
  • Youil Energy Tech suffered a loss of up to 65%

    In recent years, the secondary battery equipment sector in South Korea has been hit by a wave of disruption, with demand temporarily stagnant and stock prices struggling to gain support. Especially for Youil Energy Tech, a manufacturer of secondary battery equipment, as the company is a latecomer to the laser equipment market, its sales cost burden is relatively high. It is expected that in the fu...

    04-12
    번역 보기
  • Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

    In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team...

    2023-08-31
    번역 보기