한국어

Observation of laser power changes in ultrafast protein dynamics

135
2024-02-28 15:00:41
번역 보기

When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state without noticing.".

The laser did not observe a single photon excitation pathway that reflects the natural dynamics of myoglobin, but instead violently collided to induce multiphoton absorption. This raises a question, is the oscillation they see in protein artifacts this more energetic excitation? Now, Schlichting and her team have conducted experiments again at lower power for inspection.

The result surprised Schlichting. "We anticipate slight changes in the dynamics, but what we see is a significant change in carbon monoxide," she said. Unlike the instant photolysis they observed at high laser power, this reaction took hundreds of femtoseconds at low power. She said that the group modeled their observations and attributed their results to two different reaction pathways, the latter of which may better represent real reactions.

However, myoglobin only differs slightly at low power. This reassures Richard Neutz, a biochemistry professor at the University of Gothenburg. Although unrelated to the group, he did review the work before publication and wrote corresponding opinions on the impact of the results. "This work is very important because it indicates that we were not completely wrong before," he said. Essentially, past high-power experiments were not perfect, but still provided valuable insights into protein dynamics. "On the other hand," Neutze said, "the author also suggests that if you are really interested in ultrafast chemistry, it is important to conduct experiments correctly because there are subtle differences in the mechanisms that are important.".

In the end, Schlichting said that researchers only need to remain transparent about the systems they are engaged in. These experiments themselves are challenging. "Sometimes you either go home without any data or do it in a multiphoton state," she said, "but you should be honest with it.".

Source: Laser Net

관련 추천
  • LOTMAXX Announces the Launch of a Multifunctional 3D Printer with Laser Cutting Function

    LOTMAXX has announced the launch of the ET model, a new type of 3D printer that can also be used as a laser cutting machine. According to the manufacturer, the core component is a fast direct extruder with a printing speed of up to 500 millimeters per second.LOTMAXX ET features an all metal casing with a printing volume of 250 x 250 x 265 mm. According to the announcement, as a special feature, th...

    2023-11-09
    번역 보기
  • Photovoltaic converters for power transmission systems

    Scientists from the University of Hahn in Spain and the University of Santiago de Compostela conducted research to determine the most suitable semiconductor materials for high-power light transmission in terrestrial and underwater environments.HPOT, also known as laser power transfer, is a method of transmitting continuous power to a remote system using a monochromatic light source through an opti...

    2023-12-29
    번역 보기
  • LASER World of PHOTONICS CHINA- 20th Anniversary Celebration Coming Soon!

    The Annual Grand Event for the Laser, Optics, and Optoelectronics Industry in AsiaLASER World of PHOTONICS CHINA20th Anniversary Celebration Coming Soon!📅 March 11-13📍 Shanghai New International Expo Centre (SNIEC), Entrance Hall 3🏢 Halls: N1-N5, E7-E4💡 1,400+ exhibitors across over 100,000 square meters Visitor Opening HoursDay 1: March 11 (Tuesday) 9:00 - 17:00Day 2: March 12 (Wednesday)...

    03-10
    번역 보기
  • Photon chips help drones fly unobstructed in weak signal areas

    With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.Using this quantum technology, scientists aim to provide the same ...

    2023-10-28
    번역 보기
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    번역 보기