한국어

Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

248
2024-03-04 14:17:24
번역 보기

Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.

LLE is the largest university project of the US Department of Energy, equipped with the OMEGA laser system, which is the world's largest academic laser, but its energy is still almost one percent of that of the Lawrence Livermore National Laboratory National Ignition Facility in California. Through Omega, Rochester's scientists successfully attempted several times to emit 28 kilojoules of laser energy into small capsules filled with deuterium and tritium fuel, causing the capsules to implode and generate enough hot plasma to trigger fusion reactions between fuel nuclei. These experiments triggered fusion reactions, generating energy that exceeded the energy in the central thermal plasma.

The OMEGA experiment uses direct laser illumination of capsules, which is different from the indirect driving method used on NIF. When using indirect driving methods, the laser is converted into X-rays, which in turn drive the capsule to implode. NIF uses an indirect driver to irradiate the capsule with X-rays using approximately 2000 kilojoules of laser energy. This led to NIF achieving a breakthrough in fusion ignition in 2022- a fusion reaction that generates net energy gain from the target.

"Generating more fusion energy than the internal energy content of the fusion site is an important threshold," said Dr. Connor Williams' 23, the lead author of the first paper, who is currently a radiation and ICF target design scientist at Sandia National Laboratory. This is a necessary requirement for anything you want to accomplish in the future, such as burning plasma or achieving ignition.

By demonstrating that they can achieve this level of implosion performance with only 28 kilojoules of laser energy, the Rochester team is excited about the prospect of applying direct drive methods to lasers with more energy. Showcasing spark plugs is an important step, however, Omega is too small to compress enough fuel to ignite.

"If you can ultimately manufacture spark plugs and compress fuel, then compared to indirect driving, direct driving has many characteristics that are beneficial for fusion energy," said Dr. Varchas Gopalaswamy'21, a LLE scientist who led the second study that explored the effects of using direct driving methods on megajoule level lasers, similar in size to NIF. After amplifying the OMEGA results to a few megajoules of laser energy, it is expected that the fusion reaction will become self-sustaining, a situation known as' burning plasma '.

Gopalaswamy said that direct driving of ICF is a promising method for achieving thermonuclear ignition and net energy in laser fusion.
"A major factor contributing to the success of these latest experiments is the development of a novel implosion design method based on statistical prediction and validated by machine learning algorithms," said Robert L. McCrory, Professor of Mechanical Engineering and Physics and Astronomy at LE. These predictive models enable us to narrow down the pool of promising candidate designs before conducting valuable experiments.

Source: Laser Net

관련 추천
  • Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders

    Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders. The related achievements were published in Scientific Reports under the title "Invested laser sintering of metal powder".The researchers demonstrated the ability of reverse laser sintering technology to manufacture metal powder parts. Researchers first deposit a layer of coppe...

    2024-01-29
    번역 보기
  • Researchers have developed a quantum cascade laser in Italy

    The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, ...

    2023-08-04
    번역 보기
  • Blue Tile Lab, a company specializing in semiconductor backend process visual inspection and laser light sources, has received additional financing

    Recently, South Korean listed company APS has invested in Blue Tile Lab, a company engaged in semiconductor backend process visual inspection and laser light sources. Meanwhile, D&T, a subsidiary of APS specializing in the production of laser cutting equipment for secondary batteries, has also made its first investment in Blue Tile Lab.According to relevant information, APS made its first inve...

    2024-12-26
    번역 보기
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    번역 보기
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    번역 보기