한국어

Unlocking visible femtosecond fiber oscillators: progress in laser science

193
2024-03-28 14:05:34
번역 보기

The emergence of ultrafast laser pulses marks an important milestone in laser science, triggering astonishing progress in a wide range of disciplines such as industrial applications, energy technology, and life sciences. Among various laser platforms that have been developed, fiber optic femtosecond oscillators are highly praised for their compact design, excellent performance, and cost-effectiveness, and have become one of the mainstream technologies for femtosecond pulse generation.

However, their working wavelengths are mainly limited to the infrared region, ranging from 0.9 to 3.5 μ m. This in turn limits their applicability in many applications that require visible wavelength light sources. For a long time, expanding compact femtosecond fiber oscillators to new visible light wavelengths has been a challenging but eagerly pursued goal in laser science.

Currently, most visible light fiber lasers use rare earth doped fluoride fibers, such as Pr3+, as effective gain media. Over the years, significant progress has been made in the development of wavelength tunable, high-power, Q-switched, and mode-locked visible light fiber lasers.

However, despite significant progress in the near-infrared field, achieving femtosecond mode locking in visible light fiber lasers remains a highly challenging task. This challenge is attributed to insufficient development of ultrafast optical components for visible light wavelengths, limited availability of high-performance visible light modulators, and extremely normal dispersion encountered in visible light fiber laser cavities.

Recent attention has been focused on near-infrared femtosecond mode-locked fiber oscillators using phase biased nonlinear amplification ring mirrors. PB-NALM eliminates the need for accumulated phase shift in long cavity fibers.

This innovation not only promotes tuning flexibility and long-life operation, but also provides the opportunity to manage intracavity dispersion in a larger parameter space, from normal dispersion state to abnormal dispersion state. Therefore, it is expected to promote the breakthrough of direct femtosecond mode locking in visible light fiber lasers and push fiber femtosecond oscillators towards the visible light band.

According to reports, researchers from the Fujian Key Laboratory of Ultra Fast Laser Technology and Applications at Xiamen University have recently developed a visible light mode-locked femtosecond fiber oscillator and amplifier.

The fiber optic femtosecond oscillator emits red light at 635 nm and adopts a 9-shaped cavity configuration. It uses double clad Pr3+doped fluoride fibers as visible light gain media, adopts visible light wavelength PB-NALM for mode locking, and utilizes a pair of customized high-efficiency high channel density diffraction gratings for dispersion management. The visible self starting mode locking established by PB-NALM directly generates red laser pulses with a pulse duration of 199 fs and a repetition rate of 53.957 MHz from the oscillator.

Accurate control of the spacing between grating pairs can switch the pulse state from dissipative or stretching pulse solitons to traditional solitons. In addition, the chirped pulse amplification system built together with the oscillator greatly improves laser performance, achieving an average output power of over 1 W, a pulse energy of 19.55 nJ, and a pulse duration of 230 fs.

Professor Luo Zhengqian, Director of the Department of Electronic Engineering at Xiamen University, said, "Our research results represent a solid step towards high-power femtosecond fiber lasers that cover the visible spectrum region and may have important applications in industrial processing, biomedical research, and scientific research.".

The author expects that their new solution for generating high-performance visible light femtosecond fiber lasers will lay the foundation for applications such as precision processing of special materials, biomedical, underwater detection, and optical atomic clocks.

Source: Laser Net

관련 추천
  • ComNav Technologies introduces Mars Pro Laser RTK

    ComNav Technology Ltd. has introduced the Mars Pro Laser RTK, the latest addition to its Universe series GNSS receiver product line, which includes the Venus Laser RTK and Mars Laser RTK. The GNSS receiver is suitable for the land surveying, GIS and construction industries with its innovative features.Mars Pro's laser mode facilitates the use of conventional GNSS receivers in areas where signals a...

    2023-09-13
    번역 보기
  • Sill Optics launches F-Theta lenses for photovoltaic applications

    The energy transformation has brought us global challenges. In this regard, renewable energy sources such as photovoltaic are crucial. The key to improving the efficiency of photovoltaic power generation is to improve the manufacturing process of solar cells. Laser material processing is used to weld individual batteries into modules, dope selective emitters, and remove very thin antireflective an...

    2023-11-22
    번역 보기
  • Researchers at the Massachusetts Institute of Technology have designed a new type of quantum light source using lead salt perovskite nanoparticles

    Most traditional quantum computing uses the spin of supercooled atoms or individual electrons as quantum bits, which form the foundation of such devices. By comparison, if light is used to replace physical entities as basic quantum bits, ordinary lenses and optical detectors can replace expensive devices to control the data input and output of quantum bits.Based on this, chemistry professors Moung...

    2023-10-09
    번역 보기
  • The Trends and Challenges of the Metal 3D Printing Industry in 2025

    In the past decade, metal 3D printing technology has experienced rapid development, from the initial production of orthopedic implants to the manufacturing of rocket boosters. This technology has become an indispensable part of multiple key industries. With the advancement of technology and the expansion of the market, we are witnessing the revival of electron beam melting (EBM) technology and the...

    01-21
    번역 보기
  • Renishao provides customized laser ruler solutions for ASML

    Renishao collaborated with ASML to meet a range of strict manufacturing and performance requirements and developed a differential interferometer system for providing direct position feedback in metrology applications. Customized encoder solutions can achieve step wise improvements in speed and throughput.Modern semiconductor technology relies on precise control of various processes used in integra...

    2023-12-14
    번역 보기